4,892 research outputs found

    Characterizing Round Spheres Using Half-Geodesics

    Full text link
    A half-geodesic is a closed geodesic realizing the distance between any pair of its points. All geodesics in a round sphere are half-geodesics. Conversely, this note establishes that Riemannian spheres with all geodesics closed and sufficiently many half-geodesics are round

    Controlling evaporation loss from water storages

    Get PDF
    [Executive Summary]: Evaporation losses from on-farm storage can potentially be large, particularly in irrigation areas in northern New South Wales and Queensland where up to 40% of storage volume can be lost each year to evaporation. Reducing evaporation from a water storage would allow additional crop production, water trading or water for the environment. While theoretical research into evaporation from storages has previously been undertaken there has been little evaluation of current evaporation mitigation technologies (EMTs) on commercial sized water storages. This project was initiated by the Queensland Government Department of Natural Resources and Mines (NRM) with the express aim of addressing this gap in our knowledge. The report addressed i) assessment of the effectiveness of different EMT’s in reducing evaporation from commercial storages across a range of climate regions, ii) assessment of the practical and technical limitations of different evaporation control products, and iii) comparison of the economics of different EMT’s on water storages used for irrigation

    Numerical Relativity Injection Infrastructure

    Full text link
    This document describes the new Numerical Relativity (NR) injection infrastructure in the LIGO Algorithms Library (LAL), which henceforth allows for the usage of NR waveforms as a discrete waveform approximant in LAL. With this new interface, NR waveforms provided in the described format can directly be used as simulated GW signals ("injections") for data analyses, which include parameter estimation, searches, hardware injections etc. As opposed to the previous infrastructure, this new interface natively handles sub-dominant modes and waveforms from numerical simulations of precessing binary black holes, making them directly accessible to LIGO analyses. To correctly handle precessing simulations, the new NR injection infrastructure internally transforms the NR data into the coordinate frame convention used in LAL.Comment: 20 pages, 2 figures, technical repor

    Cyber-Virtual Systems: Simulation, Validation & Visualization

    Full text link
    We describe our ongoing work and view on simulation, validation and visualization of cyber-physical systems in industrial automation during development, operation and maintenance. System models may represent an existing physical part - for example an existing robot installation - and a software simulated part - for example a possible future extension. We call such systems cyber-virtual systems. In this paper, we present the existing VITELab infrastructure for visualization tasks in industrial automation. The new methodology for simulation and validation motivated in this paper integrates this infrastructure. We are targeting scenarios, where industrial sites which may be in remote locations are modeled and visualized from different sites anywhere in the world. Complementing the visualization work, here, we are also concentrating on software modeling challenges related to cyber-virtual systems and simulation, testing, validation and verification techniques for them. Software models of industrial sites require behavioural models of the components of the industrial sites such as models for tools, robots, workpieces and other machinery as well as communication and sensor facilities. Furthermore, collaboration between sites is an important goal of our work.Comment: Preprint, 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2014

    Quantum Algorithmic Readout in Multi-Ion Clocks

    Get PDF
    Optical clocks based on ensembles of trapped ions offer the perspective of record frequency uncertainty with good short-term stability. Most suitable atomic species lack closed transitions for fast detection such that the clock signal has to be read out indirectly through transferring the quantum state of clock ions to co-trapped logic ions by means of quantum logic operations. For ensembles of clock ions existing methods for quantum logic readout require a linear overhead in either time or the number of logic ions. Here we report a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. We show that the readout algorithm can be implemented with a single application of a multi-species quantum gate, which we describe in detail for a crystal of Aluminum and Calcium ions.Comment: 4 pages + 7 pages appendix; 5 figures; v3: published versio

    Experimental and theoretical investigation of a multi-mode cooling scheme using multiple EIT resonances

    Full text link
    We introduce and demonstrate double-bright electromagnetically induced transparency (D-EIT) cooling as a novel approach to EIT cooling. By involving an additional ground state, two bright states can be shifted individually into resonance for cooling of motional modes of frequencies that may be separated by more than the width of a single EIT cooling resonance. This allows three-dimensional ground state cooling of a 40^{40}Ca+^+ ion trapped in a linear Paul trap with a single cooling pulse. Measured cooling rates and steady-state mean motional quantum numbers for this D-EIT cooling are compared with those of standard EIT cooling as well as concatenated standard EIT cooling pulses for multi-mode cooling. Experimental results are compared to full density matrix calculations. We observe a failure of the theoretical description within the Lamb-Dicke regime that can be overcome by a time-dependent rate theory. Limitations of the different cooling techniques and possible extensions to multi-ion crystals are discussed.Comment: 18 pages, 13 figures. We have decided to merge the contents of our submission arXiv:1711.00738 with this paper into one comprehensive work. New titl

    A Theoretical Investigation of the Geometries, Vibrational Frequencies, and Binding Energies of Several Mixed Alkali Halide Dimers

    Get PDF
    Results are presented from ab initio calculations on several mixed alkali halide dimers made up of Li, Na, F, and Cl. All of the dimers are investigated at the restricted Hartree–Fock level to provide ab initio estimates of geometries, vibrational frequencies, and binding energies. The dimer LiNaF2 is then treated using a variety of basis sets at the Hartree–Fock level, as well as at correlated levels (second‐order Møller–Plesset and coupled‐cluster singles and doubles) to examine the sensitivity of the calculations to use of higher levels of theory. The results are then compared to the experimental data available for the LiNaF2 molecule, previous theoretical results for the monomers, and recent semiempirical calculations on the mixed dimers
    corecore