911 research outputs found

    Accuracy of phylogeny reconstruction methods combining overlapping gene data sets

    Get PDF
    Background The availability of many gene alignments with overlapping taxon sets raises the question of which strategy is the best to infer species phylogenies from multiple gene information. Methods and programs abound that use the gene alignment in different ways to reconstruct the species tree. In particular, different methods combine the original data at different points along the way from the underlying sequences to the final tree. Accordingly, they are classified into superalignment, supertree and medium-level approaches. Here, we present a simulation study to compare different methods from each of these three approaches. Results We observe that superalignment methods usually outperform the other approaches over a wide range of parameters including sparse data and gene-specific evolutionary parameters. In the presence of high incongruency among gene trees, however, other combination methods show better performance than the superalignment approach. Surprisingly, some supertree and medium-level methods exhibit, on average, worse results than a single gene phylogeny with complete taxon information. Conclusions For some methods, using the reconstructed gene tree as an estimation of the species tree is superior to the combination of incomplete information. Superalignment usually performs best since it is less susceptible to stochastic error. Supertree methods can outperform superalignment in the presence of gene-tree conflict

    RNAi-based validation of antibodies for reverse phase protein arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reverse phase protein arrays (RPPA) have been demonstrated to be a useful experimental platform for quantitative protein profiling in a high-throughput format. Target protein detection relies on the readout obtained from a single detection antibody. For this reason, antibody specificity is a key factor for RPPA. RNAi allows the specific knockdown of a target protein in complex samples and was therefore examined for its utility to assess antibody performance for RPPA applications.</p> <p>Results</p> <p>To proof the feasibility of our strategy, two different anti-EGFR antibodies were compared by RPPA. Both detected the knockdown of EGFR but at a different rate. Western blot data were used to identify the most reliable antibody. The RNAi approach was also used to characterize commercial anti-STAT3 antibodies. Out of ten tested anti-STAT3 antibodies, four antibodies detected the STAT3-knockdown at 80-85%, and the most sensitive anti-STAT3 antibody was identified by comparing detection limits. Thus, the use of RNAi for RPPA antibody validation was demonstrated to be a stringent approach to identify highly specific and highly sensitive antibodies. Furthermore, the RNAi/RPPA strategy is also useful for the validation of isoform-specific antibodies as shown for the identification of AKT1/AKT2 and CCND1/CCND3-specific antibodies.</p> <p>Conclusions</p> <p>RNAi is a valuable tool for the identification of very specific and highly sensitive antibodies, and is therefore especially useful for the validation of RPPA-suitable detection antibodies. On the other hand, when a set of well-characterized RPPA-antibodies is available, large-scale RNAi experiments analyzed by RPPA might deliver useful information for network reconstruction.</p

    Rooted triple consensus and anomalous gene trees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anomalous gene trees (AGTs) are gene trees with a topology different from a species tree that are more probable to observe than congruent gene trees. In this paper we propose a rooted triple approach to finding the correct species tree in the presence of AGTs.</p> <p>Results</p> <p>Based on simulated data we show that our method outperforms the <it>extended majority rule consensus </it>strategy, while still resolving the species tree. Applying both methods to a metazoan data set of 216 genes, we tested whether AGTs substantially interfere with the reconstruction of the metazoan phylogeny.</p> <p>Conclusion</p> <p>Evidence of AGTs was not found in this data set, suggesting that erroneously reconstructed gene trees are the most significant challenge in the reconstruction of phylogenetic relationships among species with current data. The new method does however rule out the erroneous reconstruction of deep or poorly resolved splits in the presence of lineage sorting.</p

    Insensitivity of alkenone carbon isotopes to atmospheric CO<sub>2</sub> at low to moderate CO<sub>2</sub> levels

    Get PDF
    Atmospheric pCO2 is a critical component of the global carbon system and is considered to be the major control of Earth’s past, present and future climate. Accurate and precise reconstructions of its concentration through geological time are, therefore, crucial to our understanding of the Earth system. Ice core records document pCO2 for the past 800 kyrs, but at no point during this interval were CO2 levels higher than today. Interpretation of older pCO2 has been hampered by discrepancies during some time intervals between two of the main ocean-based proxy methods used to reconstruct pCO2: the carbon isotope fractionation that occurs during photosynthesis as recorded by haptophyte biomarkers (alkenones) and the boron isotope composition (δ11B) of foraminifer shells. Here we present alkenone and δ11B-based pCO2 reconstructions generated from the same samples from the Plio-Pleistocene at ODP Site 999 across a glacial-interglacial cycle. We find a muted response to pCO2 in the alkenone record compared to contemporaneous ice core and δ11B records, suggesting caution in the interpretation of alkenone-based records at low pCO2 levels. This is possibly caused by the physiology of CO2 uptake in the haptophytes. Our new understanding resolves some of the inconsistencies between the proxies and highlights that caution may be required when interpreting alkenone-based reconstructions of pCO2

    Analysis of the Hydrogen-rich Magnetic White Dwarfs in the SDSS

    Full text link
    We have calculated optical spectra of hydrogen-rich (DA) white dwarfs with magnetic field strengths between 1 MG and 1000 MG for temperatures between 7000 K and 50000 K. Through a least-squares minimization scheme with an evolutionary algorithm, we have analyzed the spectra of 114 magnetic DAs from the SDSS (95 previously published plus 14 newly discovered within SDSS, and five discovered by SEGUE). Since we were limited to a single spectrum for each object we used only centered magnetic dipoles or dipoles which were shifted along the magnetic dipole axis. We also statistically investigated the distribution of magnetic-field strengths and geometries of our sample.Comment: to appear in the proceedings of the 16th European Workshop on White Dwarfs, Barcelona, 200

    IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era

    Get PDF
    IQ-TREE (http://www.iqtree.org, last accessed February 6, 2020) is a user-friendly and widely used software package for phylogenetic inference using maximum likelihood. Since the release of version 1 in 2014, we have continuously expanded IQ-TREE to integrate a plethora of new models of sequence evolution and efficient computational approaches of phylogenetic inference to deal with genomic data. Here, we describe notable features of IQ-TREE version 2 and highlight the key advantages over other software.This work was supported by the Austrian Science Fund (Grant No. I-2805-B29) to A.v.H. and by the Australian National University Futures Scheme grant to R.L
    corecore