1,833 research outputs found

    Technical Note: Phantom study to evaluate the dose and image quality effects of a computed tomography Organ-based Tube Current Modulation Technique

    Get PDF
    Purpose This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. Conclusions ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol

    Inclusive Growth – an Agenda for Germany Five action areas for a new growth strategy. Bertelsmann Stiftung Inclusive Growth for Germany|20

    Get PDF
    Germany is entering a new legislative period with a strong economic position. Across the board, current figures and forecasts for the near future are encouraging. But both the private sector and society are confronted with major challenges – globalization, digitalization and demographic shifts are transforming the demands made on our economy. Current economic policy in Germany must pave the way for tomorrow’s prosperity. This involves making a priority out of promoting growth that provides everyone an opportunity to participate in and thereby benefit from this growth. We need an Agenda for Inclusive Growth

    Application of Fractal Dimension for Quantifying Noise Texture in Computed Tomography Images

    Get PDF
    Purpose Evaluation of noise texture information in CT images is important for assessing image quality. Noise texture is often quantified by the noise power spectrum (NPS), which requires numerous image realizations to estimate. This study evaluated fractal dimension for quantifying noise texture as a scalar metric that can potentially be estimated using one image realization. Methods The American College of Radiology CT accreditation phantom (ACR) was scanned on a clinical scanner (Discovery CT750, GE Healthcare) at 120 kV and 25 and 90 mAs. Images were reconstructed using filtered back projection (FBP/ASIR 0%) with varying reconstruction kernels: Soft, Standard, Detail, Chest, Lung, Bone, and Edge. For each kernel, images were also reconstructed using ASIR 50% and ASIR 100% iterative reconstruction (IR) methods. Fractal dimension was estimated using the differential box‐counting algorithm applied to images of the uniform section of ACR phantom. The two‐dimensional Noise Power Spectrum (NPS) and one‐dimensional‐radially averaged NPS were estimated using established techniques. By changing the radiation dose, the effect of noise magnitude on fractal dimension was evaluated. The Spearman correlation between the fractal dimension and the frequency of the NPS peak was calculated. The number of images required to reliably estimate fractal dimension was determined and compared to the number of images required to estimate the NPS‐peak frequency. The effect of Region of Interest (ROI) size on fractal dimension estimation was evaluated. Feasibility of estimating fractal dimension in an anthropomorphic phantom and clinical image was also investigated, with the resulting fractal dimension compared to that estimated within the uniform section of the ACR phantom. Results Fractal dimension was strongly correlated with the frequency of the peak of the radially averaged NPS curve, having a Spearman rank‐order coefficient of 0.98 (P‐value \u3c 0.01) for ASIR 0%. The mean fractal dimension at ASIR 0% was 2.49 (Soft), 2.51 (Standard), 2.52 (Detail), 2.57 (Chest), 2.61 (Lung), 2.66 (Bone), and 2.7 (Edge). A reduction in fractal dimension was observed with increasing ASIR levels for all investigated reconstruction kernels. Fractal dimension was found to be independent of noise magnitude. Fractal dimension was successfully estimated from four ROIs of size 64 × 64 pixels or one ROI of 128 × 128 pixels. Fractal dimension was found to be sensitive to non‐noise structures in the image, such as ring artifacts and anatomical structure. Fractal dimension estimated within a uniform region of an anthropomorphic phantom and clinical head image matched that estimated within the ACR phantom for filtered back projection reconstruction. Conclusions Fractal dimension correlated with the NPS‐peak frequency and was independent of noise magnitude, suggesting that the scalar metric of fractal dimension can be used to quantify the change in noise texture across reconstruction approaches. Results demonstrated that fractal dimension can be estimated from four, 64 × 64‐pixel ROIs or one 128 × 128 ROI within a head CT image, which may make it amenable for quantifying noise texture within clinical images

    The PAX Toolkit and its Applications at Tevatron and LHC

    Full text link
    At the CHEP03 conference we launched the Physics Analysis eXpert (PAX), a C++ toolkit released for the use in advanced high energy physics (HEP) analyses. This toolkit allows to define a level of abstraction beyond detector reconstruction by providing a general, persistent container model for HEP events. Physics objects such as particles, vertices and collisions can easily be stored, accessed and manipulated. Bookkeeping of relations between these objects (like decay trees, vertex and collision separation, etc.) including deep copies is fully provided by the relation management. Event container and associated objects represent a uniform interface for algorithms and facilitate the parallel development and evaluation of different physics interpretations of individual events. So-called analysis factories, which actively identify and distinguish different physics processes and study systematic uncertainties, can easily be realized with the PAX toolkit. PAX is officially released to experiments at Tevatron and LHC. Being explored by a growing user community, it is applied in a number of complex physics analyses, two of which are presented here. We report the successful application in studies of t-tbar production at the Tevatron and Higgs searches in the channel t-tbar-Higgs at the LHC and give a short outlook on further developments

    Erstellung einer Education App im Fach Mathematik fĂŒr die strukturierte und inhaltliche Zusammenfassung der schulischen Themen am Beispiel der 8. Klasse Realschule

    Get PDF
    Auf dem Markt der Android Applikationen gibt es ein breites Spektrum an Lernanwendungen. Allerdings exisitiert ein Mangel an gut strukturierten inhaltlichen Zusammenfassungen der schulischen Themen, gerade im Fach Mathematik. Mein Ziel der Bachelorarbeit ist, eine Education App zu entwickeln, diese im realen Betrieb zu testen und somit einen Lösungsansatz fĂŒr den Mangel an solchen Apps zu erhalten. Ich werde am Beispiel der 8. Klasse Realschule im Fach Mathematik eine thematische Zusammenfassung erzeugen und als App umsetzen. Mathematische Grundlage hierfĂŒr bildet das Schulbuch Schnittpunkt 8 des Klettverlages (Differenzierende Ausgabe, 2015). Bugfixing und Evaluierung verlĂ€uft Hand in Hand, um am Ende des Entwicklungsprozesses eine voll funktionsfĂ€hige, getestete App zu bekommen. Mit Hilfe eines Fragebogens wird dabei direkt auf die Zielgruppe eingegangen. Die App wird im Anschluss des Entwicklungsprozesses nach dem Open- Closed Prinzip fungieren. Ist also fĂŒr Erweiterungen offen. Diese Funktion erreiche ich durch genau definierte Schnittstellen. Es wird möglich sein, neue Klassen ebenso wie Schularten hinzuzufĂŒgen. Als Entwicklungsumgebung dient mir IntelliJ, als TestgerĂ€t ein Samsung Smartphone. Die App wird den Namen MaTHive Spectre tragen, um direkt auf das Potential aufmerksam zu machen und einen einprĂ€gsamen Namen zu erhalten

    Understanding the Light-induced Lifetime Degradation and Regeneration in Multicrystalline Silicon

    Get PDF
    In this contribution, we focus on improving the fundamental understanding of the carrier lifetime degradation and regeneration observed in block-cast multicrystalline silicon (mc-Si) wafers under illumination at elevated temperature. We observe a pronounced degradation in lifetime at 1 sun light intensity and 75̊C after rapid thermal annealing (RTA) in a belt-firing furnace at a set peak temperature of 900̊C. However, almost no lifetime instability is detected in mc-Si wafers which are fired at a peak temperature of only 650̊C, clearly showing that the firing step is triggering the degradation effect. Lifetime spectroscopy reveals that the light-induced recombination centre is a deep-level centre with an asymmetric electron-to-hole capture cross section ratio of 20±7. After completion of the degradation, the lifetime is observed to recover and finally reaches even higher carrier lifetimes compared to the initial state. While the lifetime degradation is found to be homogeneous, the regeneration shows an inhomogeneous behaviour, which starts locally and spreads later laterally throughout the sample. Furthermore, the regeneration process is extremely slow with time constants of several hundred hours. We demonstrate, however, that by increasing the regeneration temperature, it is possible to significantly speed up the regeneration process so that it might become compatible with industrial solar cell production. To explain the observed lifetime evolution, we propose a defect model, where metal precipitates in the mc-Si bulk dissolve during the RTA treatment and the mobile metal atoms bind to a homogeneously distributed impurity. Restructuring and subsequent dissociation of this defect complex is assumed to cause the lifetime degradation, whereas a subsequent diffusion of the mobile species to the sample surfaces and crystallographic defects explains the regeneration.State of Lower SaxonyGerman Federal Ministry of Economics/0325763

    An Early Reduction in Treg Cells Correlates with Enhanced Local Inflammation in Cutaneous Leishmaniasis in CCR6-Deficient Mice

    Get PDF
    Resistance to Leishmania major infection is dependent on the development of a cell-mediated Th1 immune response in resistant C57BL/6 mice whereas Th2-prone BALB/c mice develop non-healing lesions after infection. The chemokine receptor CCR6 is shared by anti-inflammatory regulatory T cells and pro-inflammatory Th17 cells. In a recent study we showed that C57BL/6 mice deficient in CCR6 exhibited enhanced footpad swelling and impaired T helper cell migration indicated by reduced recruitment of total T helper cells into the skin after infection and a reduced delayed type hypersensitivity reaction. Based on these findings we tested whether the lack of CCR6 alters Treg or Th17 cell responses during the course of Leishmania major infection. When we analyzed T cell subsets in the lymph nodes of CCR6-deficient mice, Th17 cell numbers were not different. However, reduced numbers of Treg cells paralleled with a stronger IFNÎł response. Furthermore, the early increase in IFNÎł-producing cells correlated with increased local tissue inflammation at later time points. Our data indicate an important role of CCR6 for Treg cells and a redundant role for Th17 cells in a Th1 cell-driven anti-parasitic immune response against Leishmania major parasites in resistant C57BL/6 mice

    Atomic-Layer-Deposited Al2O3 as Effective Barrier against the Diffusion of Hydrogen from SiNx:H Layers into Crystalline Silicon during Rapid Thermal Annealing

    Get PDF
    Stacks of hydrogen-lean aluminum oxide, deposited via plasma-assisted atomic-layer-deposition, and hydrogen-rich plasma-enhanced chemical vapor-deposited silicon nitride (SiNx) are applied to boron-doped float-zone silicon wafers. A rapid thermal annealing (RTA) step is performed in an infrared conveyor-belt furnace at different set-peak temperatures. The hydrogen content diffused into the crystalline silicon during the RTA step is quantified by measurements of the silicon resistivity increase due to hydrogen passivation of boron dopant atoms. These experiments indicate that there exists a temperature-dependent maximum in the introduced hydrogen content. The exact position of this maximum depends on the composition of the SiNx layer. The highest total hydrogen content, exceeding 1015 cm−3, is introduced into the silicon bulk from silicon-rich SiNx layers with a refractive index of 2.3 (at λ = 633 nm) at an RTA peak temperature of 800 °C, omitting the Al2O3 interlayer. Adding an Al2O3 interlayer with a thickness of 20 nm reduces the hydrogen content by a factor of four, demonstrating that Al2O3 acts as a highly effective hydrogen diffusion barrier. Measuring the hydrogen content in the silicon bulk as a function of Al2O3 thickness at different RTA peak temperatures provides the hydrogen diffusion length in Al2O3 as a function of measured temperature

    CT Automated Exposure Control Using A Generalized Detectability Index

    Get PDF
    Purpose Identifying an appropriate tube current setting can be challenging when using iterative reconstruction due to the varying relationship between spatial resolution, contrast, noise, and dose across different algorithms. This study developed and investigated the application of a generalized detectability index (d\u27gen) to determine the noise parameter to input to existing automated exposure control (AEC) systems to provide consistent image quality (IQ) across different reconstruction approaches. Methods This study proposes a task‐based automated exposure control (AEC) method using a generalized detectability index (d\u27gen). The proposed method leverages existing AEC methods that are based on a prescribed noise level. The generalized d\u27gen metric is calculated using lookup tables of task‐based modulation transfer function (MTF) and noise power spectrum (NPS). To generate the lookup tables, the American College of Radiology CT accreditation phantom was scanned on a multidetector CT scanner (Revolution CT, GE Healthcare) at 120 kV and tube current varied manually from 20 to 240 mAs. Images were reconstructed using a reference reconstruction algorithm and four levels of an in‐house iterative reconstruction algorithm with different regularization strengths (IR1–IR4). The task‐based MTF and NPS were estimated from the measured images to create lookup tables of scaling factors that convert between d\u27gen and noise standard deviation. The performance of the proposed d\u27gen‐AEC method in providing a desired IQ level over a range of iterative reconstruction algorithms was evaluated using the American College of Radiology (ACR) phantom with elliptical shell and using a human reader evaluation on anthropomorphic phantom images. Results The study of the ACR phantom with elliptical shell demonstrated reasonable agreement between the d\u27gen predicted by the lookup table and d\u27 measured in the images, with a mean absolute error of 15% across all dose levels and maximum error of 45% at the lowest dose level with the elliptical shell. For the anthropomorphic phantom study, the mean reader scores for images resulting from the d\u27gen‐AEC method were 3.3 (reference image), 3.5 (IR1), 3.6 (IR2), 3.5 (IR3), and 2.2 (IR4). When using the d\u27gen‐AEC method, the observers’ IQ scores for the reference reconstruction were statistical equivalent to the scores for IR1, IR2, and IR3 iterative reconstructions (P \u3e 0.35). The d\u27gen‐AEC method achieved this equivalent IQ at lower dose for the IR scans compared to the reference scans. Conclusions A novel AEC method, based on a generalized detectability index, was investigated. The proposed method can be used with some existing AEC systems to derive the tube current profile for iterative reconstruction algorithms. The results provide preliminary evidence that the proposed d\u27gen‐AEC can produce similar IQ across different iterative reconstruction approaches at different dose levels
    • 

    corecore