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Abstract 

Purpose: This technical note quantifies the dose and image quality 

performance of a clinically available organ-dose-based tube current 

modulation (ODM) technique, using experimental and simulation phantom 

studies. The investigated ODM implementation reduces the tube current for 

the anterior source positions, without increasing current for posterior 

positions, although such an approach was also evaluated for comparison. 

Methods: Axial CT scans at 120 kV were performed on head and chest 

phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, 

Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, 

heart, spine, eye lens, and brain regions for ODM and 3D-modulation 

(SmartmA) settings. Monte Carlo simulations, validated with experimental 

data, were performed on 28 voxelized head phantoms and 10 chest phantoms 

to quantify organ dose and noise standard deviation. The dose and noise 

effects of increasing the posterior tube current were also investigated. 

Results: ODM reduced the dose for all experimental dosimeters with respect 

to SmartmA, with average dose reductions across dosimeters of 31% 

(breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% 

(brain), with similar results for the simulation validation study. In the 

phantom library study, the average dose reduction across all phantoms was 

34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). 

ODM increased the noise standard deviation in reconstructed images by 6%–

20%, with generally greater noise increases in anterior regions. Increasing 

the posterior tube current provided similar dose reduction as ODM for breast 

and eye lens, increased dose to the spine, with noise effects ranging from 2% 

noise reduction to 16% noise increase. At noise equal to SmartmA, ODM 

increased the estimated effective dose by 4% and 8% for chest and head 

scans, respectively. Increasing the posterior tube current further increased 

the effective dose by 15% (chest) and 18% (head) relative to SmartmA. 

Conclusions: ODM reduced dose in all experimental and simulation studies 

over a range of phantoms, while increasing noise. The results suggest a net 

dose/noise benefit for breast and eye lens for all studied phantoms, negligible 

lung dose effects for two phantoms, increased lung dose and/or noise for 

eight phantoms, and increased dose and/or noise for brain and spine for all 

studied phantoms compared to the reference protocol. 

Key Topics: Medical image noise, Lungs, Brain, Tissues, Dosimetry 

1. Introduction 

Increasing concern about the risks of radiation from routine CT 

scans has prompted research into methods for reducing radiation 

dose, with emphasis in reducing dose to radiosensitive tissues such as 

the eye lens and breast. Previous studies investigated organ-based 

tube current modulation (TCM) techniques that reduce tube current for 

the anterior views and increase tube current for posterior views.1–7 
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Increased tube current for the posterior views increased the absorbed 

dose in spine, lung, and other tissues.1–7,24 Bismuth shields were also 

proposed to reduce dose to anterior organs, although with increased 

image degradations.2,8,9 Studies have shown that if the noise increase 

due to shields is acceptable, equal or lower dose can be obtained by 

global tube current reduction.1,2 

This study evaluated a commercially available organ-dose-based 

tube current modulation (ODM) implementation that performs targeted 

tube current reduction by decreasing the tube current for a range of 

anterior views without increasing the tube current for the posterior 

views. Different ODM protocols are available for chest and head scans, 

with the goal of reducing dose to the breast (for female patients) and 

eye lens, respectively. This study quantified the radiation dose and 

noise standard deviation effects of this specific ODM implementation 

compared to the reference protocol on the same scanner. The dose 

and noise effects of increasing the posterior tube current to maintain 

the same mAs as the reference scan were also investigated. 

2. Methods and Materials 

This study investigated the dose and image quality performance 

of a specific organ-based tube current modulation technique (ODM, GE 

Healthcare, Chalfont St. Giles, UK). ODM was compared to the 

reference 3D modulation technique (SmartmA, GE Healthcare, 

Chalfont St. Giles, UK) that varies the current in both the slice and 

angular directions based on estimates of patient attenuation obtained 

from scout images. As can be seen in Fig. 1, SmartmA varies tube 

current in the angular direction, with the minimum and maximum 

values depending on factors such as the patient attenuation at that 

scan-location and the prescribed noise index. ODM is a modification to 

SmartmA that further reduces tube current for the anterior views while 

maintaining the SmartmA settings for the remaining views. Routine 

head and chest scans experience tube current reduction of 

approximately 30% and 40% across 100∘ and 160∘ of anterior views, 

respectively. For the phantom that generated Fig. 1, ODM used 80% of 

the photons of the SmartmA scan. 
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FIG. 1. Tube current at each projection angle for one scan rotation of a chest 
phantom. An angle of zero degrees refers to the AP view. 

For the phantom library study (Sec. 2.C), an additional tube 

current modulation technique was simulated to investigate the dose 

and noise effects of increasing the posterior tube current to 

compensate for the decreased anterior tube current. The simulated 

tube current modulation method (TCMpost) was calculated to have the 

same anterior tube current as ODM, with the tube current in the 

remaining views increased to match the total mAs of SmartmA for 

each rotation, as illustrated in Fig. 1. The specific TCMpost modulation 

scheme simulated in this study is not commercially available. 

2.A.  Experimental methods  

Axial CT scans at 120 kV were performed on anthropomorphic 

head and chest phantoms (Rando Alderson Research Laboratories, 

Stanford, CA) on an ODM-equipped scanner (Optima CT660, GE 

Healthcare, Chalfont St. Giles, England). The effects of ODM were 

studied using axial exams to avoid the confounding effects of helical 

start angle, which can significantly affect some organ doses.10–12 

Thirteen MOSFET dosimeters (mobile MOSFET Dosimetry System, Best 

Medical, Ottawa, Canada) were placed at tissue locations in the breast, 

lung, heart, eye lens, and brain regions to quantify radiation dose. 

Because the spine region was inaccessible for dosimeter placement, a 
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dosimeter was placed in the posterior region of the lung in the closest 

insert to the spine region to estimate dose changes in the posterior 

“spine” region. 

For each phantom, five scans were performed with SmartmA 

and ODM, with all other scan parameters held constant. Head scans 

were performed using seven axial rotations, 0.5 cm slice thickness, 

and 14 cm total scan range. The noise index was held constant at 2.8, 

resulting in a CTDIvol of 43.27 mGy for SmartmA and 41.27 mGy for 

ODM. The chest phantom was scanned with six axial rotations, 0.25 

cm slice thickness, and 24 cm total scan range. The noise index was 

set to 7.0 resulting in a CTDIvol of 21.2 mGy for SmartmA and 17.1 

mGy for ODM. For each dosimeter, the relative change in dose with 

respect to SmartmA was calculated. To assess the effect of ODM on 

image noise, the standard deviation was calculated in three 15 × 15 

pixel regions of interest (ROIs) in the brain and chest regions of all 

reconstructed images. 

2.B.  Simulation methods  

The CT system was modeled in geant4 (Ref. 13) with a 120 kV 

spectrum14 and with beam collimation and number of rotations as in 

the experiments. A beam-shaping bowtie filter was also modeled using 

the information provided in the literature.15 The output of the Monte 

Carlo simulations was the absorbed energy in electron volt at each 

voxel location of the phantom for each view angle and gantry scan-

location. The absorbed energy was summed across all voxels in a 

segmented tissue region. The total absorbed energy for each tissue 

type was used as a surrogate for absorbed dose when calculating the 

relative change in dose for ODM compared to SmartmA. 

Polyenergetic ray-tracing simulations were also implemented to 

generate simulated projections at the same angular sampling as the 

experiment. The simulations modeled Poisson noise and did not 

include electronic noise. The ray-tracing simulation software also 

generated an AP scout for all voxelized phantoms. This scout was input 

to the proprietary tube current modulation algorithm to determine the 

tube current for each view angle and gantry scan-location for 

SmartmA and ODM. 
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This study compared the relative dose and noise performance of 

SmartmA and ODM, which depends on the shape of the tube current 

profiles (Fig. 1), but not the absolute number of photons. For Monte 

Carlo dose simulations, the total number of simulated photons was 

empirically determined to provide deposited energy estimates with low 

standard deviation (<1%) between trials. For the ray-tracing 

simulations, the tube current profiles were multiplied by an empirically 

determined scaling factor of 7.4 × 105 photons/mA for each ray to 

achieve reconstructed noise standard deviation of approximately 7–20 

HU. All data were reconstructed using the same in-house filtered 

backprojection algorithm. 

The simulation workflow was validated by performing 

simulations on a voxelized version of the experimental 

anthropomorphic phantoms. To create the phantom, the volume of 

experimental axial head and chest images was segmented into four 

materials: air (<−200 HU), water (−200 to 5 HU), soft tissue (5–280 

HU), and bone (>280 HU), with attenuation coefficient obtained from 

the NIST XCOM database.16 Tube current profiles were generated from 

simulated AP scout images of these phantoms for SmartmA and ODM 

settings using proprietary software. The dosimeter locations in the 

experimental images were segmented in the voxelized phantoms. The 

absorbed dose to the dosimeter locations was estimated using the 

Monte Carlo simulation software. The percent change in dose for ODM 

with respect to SmartmA was compared for both experimental and 

simulated results. Relative noise with respect to SmartmA was then 

compared for both experimental and simulated reconstructed images. 

2.C.  Voxelized phantom library study  

Voxelized phantoms were simulated from the extended cardiac-

torso (XCAT) phantom library17 to study the ODM dose and image 

quality effects for patients of varying sizes and anatomy. For the 

purpose of this study, the head phantoms were segmented into eight 

materials: air, water, brain, blood, cartilage, bone, muscle, and eye 

lens, while the chest phantoms were segmented into eleven materials: 

air, lung, soft tissue, muscle, adipose, glandular breast, blood, bone, 

water, spinal cord, and cartilage. The glandular breast tissue was 

segmented and modeled as 100% glandular tissue, with the remaining 
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breast modeled as adipose tissue. The x-ray mass attenuation values 

for the segmented materials were obtained from NIST.16 Blood in the 

chest phantom was modeled as a mixture of water and iodine with 

0.28 mg/ml iodine concentration. This study used a total of 28 head 

(15 male and 13 female) and 10 chest (all female) phantoms from the 

XCAT library. The body mass index (BMI) of the voxelized phantoms 

ranged from 18.2 to 36.7 with an average BMI of 27.3. Monte Carlo 

and ray-tracing simulations were performed as described in Sec. 2.B. 

The Monte Carlo simulations estimated the percent change in dose for 

ODM and TCMpost compared to SmartmA in the brain and eye lens 

(head scans) and breast, lung, heart, and spine (chest scans). The 

noise standard deviation of SmartmA compared to ODM and TCMpost 

was calculated in ROIs in the heart, anterior lung, and posterior lung 

regions for the reconstructed chest images, and in anterior, center, 

and posterior brain regions for the head images. 

The effect of patient size was investigated by calculating the 

effective diameter of each head and chest phantom.18 To determine 

which organs exhibit a net benefit in dose and/or noise, a cost–benefit 

analysis was performed on the phantom library simulation results by 

plotting relative noise versus relative dose of ODM compared to 

SmartmA. To investigate the effects of increasing the posterior tube 

current to compensate for the photons removed in the anterior views, 

the same cost–benefit plot was generated for the TCMpost modulation 

method. 

The overall dose effects of ODM and TCMpost were compared 

relative to SmartmA by estimating the effective dose of both 

techniques at noise standard deviation equal to SmartmA. For each 

phantom and scan type (head or chest), the dose to each tissue type, 

d, was calculated by dividing the deposited energy by the total mass of 

that tissue in the phantom. The metric of effective dose, 𝐷̃eff, was 

estimated for both ODM and TCMpost techniques as a weighted sum of 

the M tissue doses, as described in  

𝐷̃eff = (
𝜎

𝜎𝑆𝑚𝑎𝑟𝑡𝑚𝐴
)
2

∑𝑤𝑖𝑑𝑖 .

𝑀

𝑖=1

 

(1)   
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σ represents the noise standard deviation in the heart and central 

brain ROIs for chest and head scans, respectively. Scaling by the 

squared ratio of noise standard deviation adjusts the dose to represent 

noise equivalent to SmartmA, assuming standard filtered 

backprojection reconstruction. The tissue weights, wi, were obtained 

from ICRP Report 103.19 The voxelized phantoms used in this study did 

not have all of the ICRP organs segmented; therefore, the calculated 

metric represents the approximate effective dose. Organs not 

segmented in the phantom were assigned a weight of zero. The spinal 

cord was assigned a weight of 0.01, based on the ICRP weighting for 

brain tissue. The voxelized phantoms in this study modeled 

homogeneous cortical bone. The dose to red bone marrow (RBM) was 

approximated by scaling the cortical bone dose by the RBM mass 

fraction and the ratio of RBM to cortical bone mass energy attenuation 

coefficient at the mean energy of the spectrum, similar to the previous 

studies.20 The RBM mass fraction was approximated for chest and head 

scans using the data in the work of Cristy and Eckerman.21 The dose to 

segmented regions of soft tissue and muscle was averaged and 

assigned the remainder tissue weight of 0.12. 

3. Results 

In the experimental study, ODM reduced the dose at all 

dosimeter locations compared to SmartmA shown in Fig. 2. When 

averaged across dosimeters in each tissue region, the dose reductions 

were 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye 

lens), and 11% (brain). Figure 2 also plots the percent change in dose 

with respect to SmartmA as estimated by the simulation validation 

study. The experimental and simulation results demonstrated similar 

trends in dose reduction across the dosimeter locations, as seen in Fig. 

2. 
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FIG. 2. Comparison of experimental and simulation dose results of ODM with respect 
to SmartmA for head and chest scans. The error bars represent the standard deviation 
across the five trials. 

Noise standard deviation increased by 8.0% and 4.1% with 

respect to SmartmA in the experimental head and chest images, 

respectively. A similar trend was observed in simulated images with an 

increase in noise by 6.5% in the head and 6.1% in the chest regions 

with respect to SmartmA. 

Table I presents the change in organ dose for ODM and TCMpost 

relative to SmartmA, averaged across all simulated phantoms. ODM 

reduced dose to all investigated organs relative to SmartmA, with the 

greatest reduction for the breast and eye lens. TCMpost reduced breast 

and eye lens dose relative to SmartmA, with less dose reduction than 

ODM. TCMpost increased spine dose and provided dose similar to 

SmartmA for the lung and brain regions. 

TABLE I. 

Modulation technique Breast Lung Spine Eye lens Brain 

ODM (%) −34 ± 1 −20 ± 2 −8 ± 5 −20 ± 2 −7 ± 1 

TCMpost (%) −29 ± 2 −1 ± 2 26 ± 3 −16 ± 2 2 ± 1 

Percent change in dose for ODM and TCMpost relative to SmartmA (mean and standard 
deviation across the simulated phantoms). A negative percentage represents a 
decrease in dose. 
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Only the spine region demonstrated statistically significant 

correlation between effective diameter and the ratio of ODM dose to 

SmartmA dose (p < 0.05), with a correlation coefficient of 0.7, 

suggesting that ODM provides less spine dose reduction for larger 

patients. When the posterior tube current was increased (TCMpost), the 

increase in spine dose relative to SmartmA increased with effective 

diameter (correlation coefficient of 0.78, p < 0.01). 

Table II presents the change in noise standard deviation for 

ODM and TCMpost relative to SmartmA, averaged across all simulated 

phantoms. Both ODM and TCMpost demonstrated increased noise 

compared to SmartmA for anterior and central ROIs, with greater 

noise increases for ODM than TCMpost. TCMpost and SmartmA 

demonstrated similar noise in posterior image regions, while ODM 

increased noise in posterior regions. The noise increase due to ODM 

was lower in the posterior regions of the image than the anterior and 

central regions. 

TABLE II. 

Modulation technique Scan type Anterior (%) Center (%) Posterior (%) 

ODM Chest 18 ± 4 20 ± 3 9 ± 4 

TCMpost  Chest 15 ± 5 17 ± 4 −2 ± 3 

ODM Head 11 ± 3 8 ± 3 6 ± 4 

TCMpost  Head 8 ± 2 5 ± 3 1 ± 3 

Percent change in noise standard deviation for ODM and TCMpost relative to SmartmA 
for three ROI locations (mean and standard deviation across the simulated phantoms). 
A negative percentage represents a decrease in noise. For chest simulations, the 
“center” corresponds to a ROI in the heart, while anterior and posterior ROIs were 
located in the lung. For the head scans, all ROIs were located in the brain. 

Figure 3(a) plots the ratio of ODM noise to SmartmA noise 

versus the ratio of ODM dose to SmartmA dose for all phantoms, while 

Fig. 3(b) presents the same plot for TCMpost. The vertical lines depict 

the range of noise effects across the three ROIs extracted for each 

dataset, with the markers located at the median noise ratio. The solid 

curve is the relationship that noise standard deviation varies inversely 

proportional to the square root of dose, which is true for filtered 

backprojection reconstruction if all scan parameters are held constant 

except for tube current. This relationship may be different for other 

reconstruction approaches, such as clinically available iterative 

methods.22 This boundary line represents no net benefit for ODM or 

TCMpost compared to SmartmA. The shaded area below the line 
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represents a net reduction in dose at noise standard deviation equal to 

SmartmA, or conversely a net reduction in noise for ODM or TCMpost at 

an organ dose equal to that of SmartmA. The region above the line 

represents a net detriment in dose and/or noise. For ODM, the data 

are plotted at horizontal axis values less than one, demonstrating that 

ODM reduced the dose to all organs and all phantoms. The vertical 

values of the ODM data points are greater than one, demonstrating an 

increase in noise. When comparing the plots for ODM and TCMpost, a 

shift of data points toward higher dose ratios is seen for TCMpost. The 

marker positions in the TCMpost plot also demonstrate a median noise 

increase for TCMpost relative to SmartmA. Unlike ODM, TCMpost 

demonstrated reduced noise in the posterior ROIs for some phantoms. 

The plots demonstrate that both ODM and TCMpost resulted in a net 

dose/noise benefit for breast and eye lens relative to SmartmA, with a 

net dose/noise detriment for the remaining tissues. The dose/net 

detriment for the lung, spine, and brain was greater for TCMpost 

compared to ODM. 

 

 
FIG. 3. Relative noise versus relative dose of (a) ODM with respect to SmartmA and 
(b) TCMpost with respect to SmartmA, with each marker representing a different 
phantom. The vertical bars display the minimum to maximum noise ratios across the 
regions where noise was measured, with markers located at the median noise levels. 
The solid curve represents the relationship that noise varies inversely proportional to 

the square root of dose. The shaded region represents a net dose/noise benefit for the 
tube current modulation technique relative to SmartmA. 
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Table III displays the percent change in estimated effective dose, 𝐷̃eff, 

for ODM and TCMpost relative to SmartmA at equal noise standard 

deviation. For chest scans, the effective dose of ODM was similar to 

SmartmA, with half of the phantoms demonstrating effective dose less 

than or equal to SmartmA and a 4.5% dose increase on average 

across the simulated phantoms. For head scans, ODM had higher 

effective dose than SmartmA for all phantoms. TCMpost had higher 

effective dose than ODM for all simulated phantoms and scan types. 

TABLE III. 

Modulation technique Scan type Percent change in 𝑫̃eff 

(%) 

ODM Chest 4 ± 7 

TCMpost  Chest 15 ± 9 

ODM Head 8 ± 6 

TCMpost  Head 18 ± 6 

Percent change in estimated effective dose for ODM and TCMpost relative to SmartmA 
(mean and standard deviation across simulated phantoms). The effective doses are 
compared at equal noise standard deviation. 

4. Discussion 

Both simulations and experiments demonstrated that ODM 

reduced dose to all tissues, but also increased noise, indicating higher 

noise standard deviation than the prescribed noise index. The noise 

increase was higher in the anterior regions of the image than the 

posterior regions of the image, which was expected due to the reduced 

anterior tube current. In the simulation study, increasing the posterior 

tube current to maintain the mAs of SmartmA did not recover the 

noise in the central and anterior image regions, although the noise 

levels were lower than ODM (Table II). In conventional filtered 

backprojection reconstruction, the reconstructed image noise is 

dominated by the noisiest views.23 The results suggest that the 

increased tube current in the posterior views, as simulated in this 

study, did not fully compensate for the reduced anterior tube current 

for all rays, leading to an overall noise increase compared to 

SmartmA. The noise performance of ODM and TCMpost could potentially 

be improved by modifying the filtered backprojection algorithm to 

apply less weight to the noisy anterior views. Iterative reconstruction 

http://dx.doi.org/10.1118/1.4933197
http://epublications.marquette.edu/
http://scitation.aip.org/content/aapm/journal/medphys/42/11/10.1118/1.4933197#t3
http://scitation.aip.org/content/aapm/journal/medphys/42/11/10.1118/1.4933197#t2
http://scitation.aip.org/content/aapm/journal/medphys/42/11/10.1118/1.4933197#c23


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Medical Physics, Vol. 42 (2015): pg. 6572-6578. DOI. This article is © American Association of Physicists in Medicine and 
permission has been granted for this version to appear in e-Publications@Marquette. American Association of Physicists 
in Medicine does not grant permission for this article to be further copied/distributed or hosted elsewhere without the 
express permission from American Association of Physicists in Medicine. 

13 

 

could also potentially be used to reduce noise effects due to decreased 

flux in the anterior views. 

The presented effective dose results are approximate, due to 

the limitations of the simulation study, as described in Sec. 2.C. The 

results suggest similar effective dose for ODM and SmartmA chest 

scans, increased effective dose for ODM head scans, and higher 

effective dose when the posterior tube current is increased. Since the 

effective dose of ODM and TCMpost was compared at noise equal to 

SmartmA, the effective doses of both methods are expected to 

decrease if the reconstruction approach is modified to reduce the 

impact of noisy views. The overall cost versus benefit of reducing dose 

to the breast/eye lens while increasing noise or dose to the 

spine/lung/brain requires further study. For example, the eye lens is 

not included in the calculation of effective dose, but reducing the dose 

to eye lens may be advantageous in certain cases. 

The head and chest experiments were performed at higher dose 

levels than typical clinical protocols to improve the precision of the 

dosimeters. The relative changes in dose and noise were calculated 

between ODM and SmartmA. These relative metrics are theoretically 

independent of the absolute dose, assuming negligible electronic noise 

contribution. A supplemental set of experiments imaged the head and 

chest phantom at SmartmA settings with CTDIvol varying from 5 to 33 

mGy, while measuring noise standard deviation with and without the 

low-signal (electronic noise) correction. The effects of electronic noise 

and the subsequent low-signal correction did not measurably affect 

noise standard deviation, suggesting that the relative noise metrics 

calculated in the experimental ODM study would be valid for typical 

clinical protocols. The phantom library results demonstrated greater 

noise increases than the experimental phantom for chest scans, but 

not for the head scans. This may be due to the modeling of iodine in 

the phantom library but not the dosimetry phantom. 

Several previous studies quantified the dose and image quality 

of a different commercial ODM implementation (X-Care, Siemens 

Healthcare, Forchheim, Germany) that reduces tube current by 75% 

for the 120° arc of anterior views and increases tube current by 25% 

for the remaining views.2,4–6 For example, one experimental study 

using a dosimetry phantom measured breast dose reduction of 35%, 
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lung dose increase of 2%, no signal-to-noise ratio (SNR) changes in 

posterior image regions, and SNR decrease of 15% for other image 

regions.24 The effective dose was found to decrease by 10% to 15% 

using this ODM implementation, although at SNR reduced by 15%.24 A 

different experimental phantom study demonstrated breast dose 

reduction ranging from 9% to 45%, lung dose reduction of 2% to 

18%, and dose changes in posterior regions ranging from 3% dose 

reduction to 52% dose increase at noise standard deviation equal to 

the reference scan.4 The study estimated a 19% increase in effective 

dose for the organ-based tube current technique compared to the 

reference chest scan at equivalent noise.4 For comparison, the results 

of the dosimetry phantom in the current study estimate breast dose 

reduction ranging from 23% to 32%, lung dose reduction of 10% to 

20%, and spine dose increase of 2% to 11% when adjusted to 

represent noise standard deviation equal to that of SmartmA. Direct 

comparison of the two ODM techniques through simulations is 

challenging because the alternative commercial implementation 

modifies the tube current in the anterior and posterior views relative to 

a different underlying 3D TCM technique.25 

The angular range of tube current reduction is narrower for the 

head ODM protocol than the chest ODM protocol. A previous study 

using a different voxelized phantom suggests that 23% of the eye lens 

dose is deposited at angles of 50∘ to 80∘ away from the AP view.26 

Therefore, greater eye lens dose reduction may be possible by 

increasing the angular range of ODM dose reduction for head scans. 

The ODM settings investigated in this paper were designed for breast 

and eye dose reduction. Future work should also investigate the 

performance of ODM for other sensitive anterior organs such as the 

gonads and thyroid. 

5. Conclusions 

ODM reduced dose in all experimental and simulation studies 

over a range of phantoms. However, ODM also increased noise 

standard deviation. Increasing the posterior tube current to match the 

total mAs of the reference scan did not fully recover the noise statistics 

and did not improve the overall dose/noise benefit. When considering 

both the decreased dose and increased noise, and assuming standard 
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filtered backprojection reconstruction, the results suggest a net ODM 

dose benefit for breast and eye lens for all studied phantoms, 

negligible lung dose effects for two phantoms, increased lung dose 

and/or noise for eight phantoms, and increased spine dose and/or 

noise for brain and spine for all studied phantoms. 
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