7,387 research outputs found

    The Compact UV Nucleus of M33

    Get PDF
    The most luminous X-ray source in the Local Group is associated with the nucleus of M33. This source, M33 X-8, appears modulated by ~20% over a ~106 day period, making it unlikely that the combined emission from unresolved sources could explain the otherwise persistent ~1e39 erg/s X-ray flux (Dubus et al. 1997, Hernquist et al. 1991). We present here high resolution UV imaging of the nucleus with the Planetary Camera of the HST undertaken in order to search for the counterpart to X-8. The nucleus is bluer and more compact than at longer wavelength images but it is still extended with half of its 3e38 erg/s UV luminosity coming from the inner 0.14". We cannot distinguish between a concentrated blue population and emission from a single object.Comment: 3 figures, accepted for publication in ApJ Letter

    Modelling cell motility and chemotaxis with evolving surface finite elements

    Get PDF
    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction-diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/maskae/CV_Warwick/Chemotaxis.html

    The effect of natural selection on the performance of maximum parsimony

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maximum parsimony is one of the most commonly used and extensively studied phylogeny reconstruction methods. While current evaluation methodologies such as computer simulations provide insight into how well maximum parsimony reconstructs phylogenies, they tell us little about how well maximum parsimony performs on taxa drawn from populations of organisms that evolved subject to <it>natural selection </it>in addition to the random factors of drift and mutation. It is clear that natural selection has a significant impact on <it>Among Site Rate Variation </it>(ASRV) and the rate of accepted substitutions; that is, accepted mutations do not occur with uniform probability along the genome and some substitutions are more likely to occur than other substitutions. However, little is know about how ASRV and non-uniform character substitutions impact the performance of reconstruction methods such as maximum parsimony. To gain insight into these issues, we study how well maximum parsimony performs with data generated by Avida, a digital life platform where populations of digital organisms evolve subject to natural selective pressures.</p> <p>Results</p> <p>We first identify conditions where natural selection does affect maximum parsimony's reconstruction accuracy. In general, as we increase the probability that a significant adaptation will occur in an intermediate ancestor, the performance of maximum parsimony improves. In fact, maximum parsimony can correctly reconstruct small 4 taxa trees on data that have received surprisingly many mutations if the intermediate ancestor has received a significant adaptation. We demonstrate that this improved performance of maximum parsimony is attributable more to ASRV than to non-uniform character substitutions.</p> <p>Conclusion</p> <p>Maximum parsimony, as well as most other phylogeny reconstruction methods, may perform significantly better on actual biological data than is currently suggested by computer simulation studies because of natural selection. This is largely due to specific sites becoming fixed in the genome that perform functions associated with an improved fitness.</p

    Volcanic glasses at the Izu arc volcanic front : new perspectives on fluid and sediment melt recycling in subduction zones

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q01007, doi:10.1029/2002GC000408.Volcanic glasses contained in distal fallout tephras from the Izu arc volcanic front (Izu VF) provide unique perspectives on general problems of arc volcanism. Unlike cogenetic lavas, these glasses are liquid compositions where element concentrations as well as ratios have significance. Isotopic evidence and previous work show that there is no sediment melt contribution to the sources of the Izu VF tephras, and hence their trace element characteristics permit determination of the trace element contents of slab fluids. The slab fluid is a composite of metasediment (∼5% of total fluid) and metabasalt (∼95%) component fluids, and carries large ion lithophile elements (LILE) with high LILE/Th and LILE/U, and low Th and U relative to source. Except for Sr and K, the metabasalt fluid is much less enriched than the metasediment fluid, but its large relative proportions make it an important carrier of many trace elements. The metabasalt fluid has the characteristics of the arc trace element signature, obviating the need for ubiquitous involvement of sediment in arc magma genesis. The fluid component in the tephras is remarkably constant in composition over fifteen million years, and hence appears to be a robust composition that may be applicable to other convergent margins. Assuming that the metabasalt fluid is a common component, and that distribution coefficients between sediment and fluid are similar from one arc to another, composite fluid compositions can be estimated for other arcs. Differences from this composition then would likely result from a sediment melt component. Comparison to arcs with sediment melt components in their source (Marianas, eastern Aleutians) shows that partial sediment melts may be so enriched, that they can completely mask the signature of the comingling slab fluids. Hence sediment melts can easily dominate the trace element and isotopic signature of many convergent margins. Since sediment melts inherit the LILE/LILE ratios of the trench sediment, Earth's surface processes must eventually influence the compositional diversity of arcs.This study was funded by the “Deutsche Forschungsgemeinschaft” (grants Str 441/3 and 441/4). The Northeast National Ion Microprobe Facility at WHOI was supported by grants EAR-9628749 and EAR-990440 from the National Science Foundation

    The Big Crunch: A Hybrid Solution to Earth and Space Science Instruction for Elementary Education Majors

    Get PDF
    We describe the rationale and process for the development of a new hybrid Earth and Space Science course for elementary education majors. A five-step course design model, applicable to both online and traditional courses, is presented. Assessment of the course outcomes after two semesters indicates that the intensive time invested in the development of the course results in a manageable workload during the semester for faculty with an already full teaching load. We also found that average scores in proctored online exams for this cohort of students are identical to the average scores of students from the same major enrolled in a face-to-face (F2F) course. Exam scores significantly improved in the second semester after adjustments to the workload and the introduction of explicit test-taking tips at the beginning of the semester. We found that our students, at all stages of their studies, were not used to the self-guided instruction required for success in online courses, and were often not as comfortable using Web-based technology for instruction as we expected

    Finite element methods for surface PDEs

    Get PDF
    In this article we consider finite element methods for approximating the solution of partial differential equations on surfaces. We focus on surface finite elements on triangulated surfaces, implicit surface methods using level set descriptions of the surface, unfitted finite element methods and diffuse interface methods. In order to formulate the methods we present the necessary geometric analysis and, in the context of evolving surfaces, the necessary transport formulae. A wide variety of equations and applications are covered. Some ideas of the numerical analysis are presented along with illustrative numerical examples

    Coherent Population Trapping of Electron Spins in a Semiconductor

    Full text link
    In high-purity n-type GaAs under strong magnetic field, we are able to isolate a lambda system composed of two Zeeman states of neutral-donor bound electrons and the lowest Zeeman state of bound excitons. When the two-photon detuning of this system is zero, we observe a pronounced dip in the excited-state photoluminescence indicating the creation of the coherent population-trapped state. Our data are consistent with a steady-state three-level density-matrix model. The observation of coherent population trapping in GaAs indicates that this and similar semiconductor systems could be used for various EIT-type experiments.Comment: 5 pages, 4 figures replaced 6/25/2007 with PRL versio

    A tetraspecific VHH-based neutralizing antibody modifies disease outcome in three animal models of Clostridium difficile infection

    Get PDF
    Clostridium difficile infection (CDI), a leading cause of nosocomial infection, is a serious disease in North America, Europe, and Asia. CDI varies greatly from asymptomatic carriage to life-threatening diarrhea, toxic megacolon, and toxemia. The incidence of community-acquired infection has increased due to the emergence of hypervirulent antibiotic-resistant strains. These new strains contribute to the frequent occurrence of disease relapse, complicating treatment, increasing hospital stays, and increasing morbidity and mortality among patients. Therefore, it is critical to develop new therapeutic approaches that bypass the development of antimicrobial resistance and avoid disruption of gut microflora. Here, we describe the construction of a single heteromultimeric VHH-based neutralizing agent (VNA) that targets the two primary virulence factors of Clostridium difficile, toxins A (TcdA) and B (TcdB). Designated VNA2-Tcd, this agent has subnanomolar toxin neutralization potencies for both C. difficile toxins in cell assays. When given systemically by parenteral administration, VNA2-Tcd protected against CDI in gnotobiotic piglets and mice and to a lesser extent in hamsters. Protection from CDI was also observed in gnotobiotic piglets treated by gene therapy with an adenovirus that promoted the expression of VNA2-Tcd
    corecore