2,562 research outputs found

    Jet-edge interaction tones

    Get PDF
    Motivated by the problem of jet-flap interaction noise, we study the tonal dynamics that occur when a sharp edge is placed in the hydrodynamic nearfield of an isothermal turbulent jet. We perform hydrodynamic and acoustic pressure measurements in order to characterise the tones as a function of Mach number and streamwise edge position. The distribution of spectral peaks observed, as a function of Mach number, cannot be explained using the usual edge-tone scenario, in which resonance is underpinned by coupling between downstream-travelling Kelvin-Helmholtz wavepackets and upstream-travelling sound waves. We show, rather, that the strongest tones are due to coupling between the former and upstream-travelling jet modes recently studied by Towne et al. (2017) and Schmidt et al. (2017). We also study the band-limited nature of the resonance, showing a high-frequency cut-off to be due to the frequency dependence of the upstream-travelling waves. At high Mach number these become evanescent above a certain frequency, whereas at low Mach number they become progressively trapped with increasing frequency, a consequence of which is their not being reflected in the nozzle plane. Additionally, a weaker, low-frequency, forced-resonance regime is identified that involves the same upstream travelling jet modes but that couple, in this instance, with downstream-travelling sound waves. It is suggested that the existence of two resonance regimes may be due to the non-modal nature of wavepacket dynamics at low-frequency.Comment: 21 pages, 15 figure

    Trophic roles of tadpoles in tropical Australian streams

    Get PDF
    Tadpoles can be abundant consumers in stream ecosystems, and may influence the structure and function of streams through their feeding activities and interactions with other organisms. To understand the contribution of tadpoles to stream functioning, and the potential impact of their loss, it is necessary to determine their diets and how they might influence food-web structure. Using gut-content analysis and stable-isotope analysis of N and C, we determined the main food sources and trophic positions of tadpoles of five native frog species, invertebrates, and fish in upland and lowland Australian Wet Tropics streams. Omnivory was prevalent among the tadpoles and invertebrates. Tadpoles consumed different food according to availability and nutrient quality, but assimilated mainly biofilm and algae. Most tadpoles and invertebrates assimilated the same high-quality foods. Food webs in upland riffles were simplified by local extinction of tadpoles, and were probably simplified in pools in the cooler months by seasonal decline in tadpole abundance. Food-web complexity was increased in some pools by the presence of predatory fish and a greater number of basal sources. As tadpoles are important seasonal components in stream food webs, their local extinction can greatly alter food-web structure and complexity and, possibly, processes such as leaf litter breakdown and sediment accumulation

    Micro- and Nanoscale Measurement Methods for Phase Change Heat Transfer on Planar and Structured Surfaces

    Get PDF
    In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux at the solid surface and in the working fluid. Next, we focus on diagnostic tools for boiling heat transfer and describe techniques for visualizing the temperature and velocity fields, as well as measurements at the single bubble level. Finally, we discuss techniques to probe the kinetics of vapor formation within a few molecular layers of the interface. We conclude with our outlook for future progress in experimental methods for phase change heat transfer.United States. Dept. of Energy (Advanced Research Projects Agency-Energy Grant DE-AR0000363)National Science Foundation (U.S.) (Grant 1261824)United States. Office of Naval Research (Grant N00014-13-1-0324

    A Composite Seyfert 2 X-ray Spectrum: Implications for the Origin of the Cosmic X-ray Background

    Get PDF
    We present a composite 1-10 keV Seyfert 2 X-ray spectrum, derived from ASCA observations of a distance-limited sample of nearby galaxies. All 29 observed objects were detected. Above ~3 keV, the composite spectrum is inverted, confirming that Seyfert 2 galaxies as a class have the spectral properties necessary to explain the flat shape of the cosmic X-ray background spectrum. Integrating the composite spectrum over redshift, we find that the total emission from Seyfert 2 galaxies, combined with the expected contribution from unabsorbed type 1 objects, provides an excellent match to the spectrum and intensity of the hard X-ray background. The principal uncertainty in this procedure is the cosmic evolution of the Seyfert 2 X-ray luminosity function. Separate composite spectra for objects in our sample with and without polarized broad optical emission lines are also presented.Comment: 11 pages (AASTeX), including 3 figures. Accepted for publication in ApJ Letter

    Gp41-targeted antibodies restore infectivity of a fusion-deficient HIV-1 envelope glycoprotein

    Get PDF
    The HIV-1 envelope glycoprotein (Env) mediates viral entry via conformational changes associated with binding the cell surface receptor (CD4) and coreceptor (CCR5/CXCR4), resulting in subsequent fusion of the viral and cellular membranes. While the gp120 Env surface subunit has been extensively studied for its role in viral entry and evasion of the host immune response, the gp41 transmembrane glycoprotein and its role in natural infection are less well characterized. Here, we identified a primary HIV-1 Env variant that consistently supports \u3e300% increased viral infectivity in the presence of autologous or heterologous HIV-positive plasma. However, in the absence of HIV-positive plasma, viruses with this Env exhibited reduced infectivity that was not due to decreased CD4 binding. Using Env chimeras and sequence analysis, we mapped this phenotype to a change Q563R, in the gp41 heptad repeat 1 (HR1) region. We demonstrate that Q563R reduces viral infection by disrupting formation of the gp41 six-helix bundle required for virus-cell membrane fusion. Intriguingly, antibodies that bind cluster I epitopes on gp41 overcome this inhibitory effect, restoring infectivity to wild-type levels. We further demonstrate that the Q563R change increases HIV-1 sensitivity to broadly neutralizing antibodies (bNAbs) targeting the gp41 membrane-proximal external region (MPER). In summary, we identify an HIV-1 Env variant with impaired infectivity whose Env functionality is restored through the binding of host antibodies. These data contribute to our understanding of gp41 residues involved in membrane fusion and identify a mechanism by which host factors can alleviate a viral defect

    The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration

    Get PDF
    We present photometric observations of an apparent Type Ia supernova (SN Ia) at a redshift of ~1.7, the farthest SN observed to date. SN 1997ff, was discovered in a repeat observation by the HST of the HDF-), and serendipitously monitored with NICMOS on HST throughout the GTO campaign. The SN type can be determined from the host galaxy type:an evolved, red elliptical lacking enough recent star formation to provide a significant population of core-collapse SNe. The class- ification is further supported by diagnostics available from the observed colors and temporal behavior of the SN, both of which match a typical SN Ia. The photo- metric record of the SN includes a dozen flux measurements in the I, J, and H bands spanning 35 days in the observed frame. The redshift derived from the SN photometry, z=1.7+/-0.1, is in excellent agreement with the redshift estimate of z=1.65+/-0.15 derived from the U_300,B_450,V_606,I_814,J_110,J_125,H_160, H_165,K_s photometry of the galaxy. Optical and near-infrared spectra of the host provide a very tentative spectroscopic redshift of 1.755. Fits to observations of the SN provide constraints for the redshift-distance relation of SNe~Ia and a powerful test of the current accelerating Universe hypothesis. The apparent SN brightness is consistent with that expected in the decelerating phase of the preferred cosmological model, Omega_M~1/3, Omega_Lambda~2/3. It is inconsistent with grey dust or simple luminosity evolution, candidate astro- physical effects which could mimic past evidence for an accelerating Universe from SNe Ia at z~0.5.We consider several sources of possible systematic error including lensing, SN misclassification, selection bias, and calibration errors. Currently, none of these effects appears likely to challenge our conclusions.Comment: Accepted to the Astrophysical Journal 38 pages, 15 figures, Pretty version available at http://icarus.stsci.edu/~stefano/ariess.tar.g

    Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins

    Get PDF
    PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication
    • …
    corecore