10,557 research outputs found

    Device for in-situ cleaving of hard crystals

    Get PDF
    Cleaving crystals in a vacuum chamber is a simple method for obtaining atomically flat and clean surfaces for materials that have a preferential cleaving plane. Most in-situ cleavers use parallel cutting edges that are applied from two sides on the sample. We found in ambient experiments that diagonal cutting pliers, where the cleavage force is introduced in a single point instead of a line work very well also for hard materials. Here, we incorporate the diagonal cutting plier principle in a design compatible with ultra-high vacuum requirements. We show optical microscopy (mm scale) and atomic force microscopy (atomic scale) images of NiO(001) surfaces cleaved with this device.Comment: 7 pages, 3 figures Submitted to Review of Scientific Instruments (2005

    Reply to the Comment on "Enhancement of the Tunneling Density of States in Tomonaga-Luttinger Liquids"

    Full text link
    In their comment Fabrizio and Gogolin dispute our result of the enhancement of the tunneling density of states in a Tomonaga-Luttinger liquid at the location of a backward scattering defect [Phys. Rev. Lett. 76, 4230(1996); cond-mat/9601020]. They state that the anticommutativity of the fermion operators of the left and right moving electrons was not considered properly in the Letter. We show in the Reply that the result of the Letter can be reproduced following the Comment when its calculations are performed correctly. This clearly indicates that the question about the anticommutation relations was raised by Fabrizio and Gogolin without serious grounds.Comment: Published in PRL as a Reply to the Comment by Fabrizio and Gogolin (cond-mat/9702080

    Host modulation of parasite competition in multiple infections

    Get PDF
    Parasite diversity is a constant challenge to host immune systems and has important clinical implications, but factors underpinning its emergence and maintenance are still poorly understood. Hosts typically harbour multiple parasite genotypes that share both host resources and immune responses. Parasite diversity is thus shaped not only by resource competition between co-infecting parasites but also by host-driven immune-mediated competition. We investigated these effects in an insect–trypanosome system, combining in vivo and in vitro single and double inoculations. In vivo, a non-pathogenic, general immune challenge was used to manipulate host immune condition and resulted in a reduced ability of hosts to defend against a subsequent exposure to the trypanosome parasites, illustrating the costs of immune activation. The associated increase in available host space benefited the weaker parasite strains of each pair as much as the otherwise more competitive strains, resulting in more frequent multiple infections in immune-challenged hosts. In vitro assays showed that in the absence of a host, overall parasite diversity was minimal because the outcome of competition was virtually fixed and resulted in strain extinction. Altogether, this shows that parasite competition is largely host-mediated and suggests a role for host immune condition in the maintenance of parasite diversity

    Employee representation and financial leverage

    Get PDF

    A spectral/finite difference method for simulating large deformations of heterogeneous, viscoelastic materials

    Get PDF
    A numerical algorithm is presented that simulates large deformations of heterogeneous, viscoelastic materials in two dimensions. The algorithm is based on a spectral/finite difference method and uses the Eulerian formulation including objective derivatives ofthe stress tensor in the rheological equations. The viscoelastic rheology is described bythe linear Maxwell model, which consists of an elastic and viscous element connected inseries. The algorithm is especially suitable to simulate periodic instabilities. The derivatives in the direction of periodicity are approximated by spectral expansions, whereas the derivatives in the direction orthogonal to the periodicity are approximated by finite differences. The 1‐D Eulerian finite difference grid consists of centre and nodal points and has variable grid spacing. Time derivatives are approximated with finite differences using an implicit strategy with a variable time step. The performance of the numerical code is demonstrated by calculation, for the first time, of the pressure field evolution during folding of viscoelastic multilayers. The algorithm is stable for viscosity contrasts up to 5 × 105, which demonstrates that spectral methods can be used to simulate dynamical systems involving large material heterogeneities. The successful simulations show that combined spectral/finite difference methods using the Eulerian formulation are a promising tool to simulate mechanical processes that involve large deformations, viscoelastic rheologies and strong material heterogeneitie

    Maser Oscillation in a Whispering-Gallery-Mode Microwave Resonator

    Full text link
    We report the first observation of above-threshold maser oscillation in a whispering-gallery(WG)-mode resonator, whose quasi-transverse-magnetic, 17th azimuthal-order WG mode, at a frequency of approx. 12.038 GHz, with a loaded Q of several hundred million, is supported on a cylinder of mono-crystalline sapphire. An electron spin resonance (ESR) associated with Fe3+ ions, that are substitutively included within the sapphire at a concentration of a few parts per billion, coincides in frequency with that of the (considerably narrower) WG mode. By applying a c.w. `pump' to the resonator at a frequency of approx. 31.34 GHz, with no applied d.c. magnetic field, the WG (`signal') mode is energized through a three-level maser scheme. Preliminary measurements demonstrate a frequency stability (Allan deviation) of a few times 1e-14 for sampling intervals up to 100 s.Comment: REVTeX v.4, 3 pages, with a separate .bbl file and 3 .eps figure

    Influence of Charge and Energy Imbalances on the Tunneling Current through a Superconductor-Normal Metal Junction

    Full text link
    We consider quasiparticle charge and energy imbalances in a thin superconductor weakly coupled with two normal-metal electrodes via tunnel junctions at low temperatures. Charge and energy imbalances, which can be created by injecting quasiparticles at one junction, induce excess tunneling current IexI_{\rm ex} at the other junction. We numerically obtain IexI_{\rm ex} as a function of the bias voltage VdetV_{\rm det} across the detection junction. We show that IexI_{\rm ex} at the zero bias voltage is purely determined by the charge imbalance, while the energy imbalance causes a nontrivial VdetV_{\rm det}-dependence of IexI_{\rm ex}. The obtained voltage-current characteristics qualitatively agree with the experimental result by R. Yagi [Phys. Rev. B {\bf 73} (2006) 134507].Comment: 10 pages, 5 figure
    • 

    corecore