857 research outputs found
Mid-infrared interferometry with K band fringe-tracking I. The VLTI MIDI+FSU experiment
Context: A turbulent atmosphere causes atmospheric piston variations leading
to rapid changes in the optical path difference of an interferometer, which
causes correlated flux losses. This leads to decreased sensitivity and accuracy
in the correlated flux measurement. Aims: To stabilize the N band
interferometric signal in MIDI (MID-infrared Interferometric instrument), we
use an external fringe tracker working in K band, the so-called FSU-A (fringe
sensor unit) of the PRIMA (Phase-Referenced Imaging and Micro-arcsecond
Astrometry) facility at VLTI. We present measurements obtained using the newly
commissioned and publicly offered MIDI+FSU-A mode. A first characterization of
the fringe-tracking performance and resulting gains in the N band are
presented. In addition, we demonstrate the possibility of using the FSU-A to
measure visibilities in the K band. Methods: We analyzed FSU-A fringe track
data of 43 individual observations covering different baselines and object K
band magnitudes with respect to the fringe-tracking performance. The N band
group delay and phase delay values could be predicted by computing the relative
change in the differential water vapor column density from FSU-A data.
Visibility measurements in the K band were carried out using a scanning mode of
the FSU-A. Results: Using the FSU-A K band group delay and phase delay
measurements, we were able to predict the corresponding N band values with high
accuracy with residuals of less than 1 micrometer. This allows the coherent
integration of the MIDI fringes of faint or resolved N band targets,
respectively. With that method we could decrease the detection limit of
correlated fluxes of MIDI down to 0.5 Jy (vs. 5 Jy without FSU-A) and 0.05 Jy
(vs. 0.2 Jy without FSU-A) using the ATs and UTs, respectively. The K band
visibilities could be measured with a precision down to ~2%.Comment: 11 pages, 13 figures, Accepted for publication in A&
Pionic Deuterium
The strong interaction shift and broadening in pionic deuterium have been
remeasured with high statistics by means of the (3p-1s) X-ray transition using
the cyclotron trap and a high-resolution crystal spectrometer. Preliminary
results are (-2325+/-31) meV (repulsive) for the shift and (1171+23/-49} meV
for the width, which yields precise values for the pion-deuteron scattering
length and the threshold parameter for pion production.Comment: Conf. Proc. Few Body 19 (FB19), August 31 - September 5, 2009, Bonn,
Germany 9 pages, 13 figure
Precision determination of the dpi -> NN transition strength at threshold
An unusual but effective way to determine at threshold the dpi -> NN
transition strength is to exploit the hadronic ground-state broadening in
pionic deuterium, accessible by x-ray spectroscopy. The broadening is dominated
by the true absorption channel dpi- -> nn, which is related to s-wave pion
production pp -> dpi+ by charge symmetry and detailed balance. Using the exotic
atom circumvents the problem of Coulomb corrections to the cross section as
necessary in the production experiments. Our dedicated measurement finds
(1171+23/-49) meV for the broadening yielding (252+5/-11) \mub.Comment: 4 pages, 2 figures, 1 tabl
Photodisintegration of the triton with realistic potentials
The process is treated by means of three-body integral
equations employing in their kernel the W-Matrix representation of the
subsystem amplitudes. As compared to the plane wave (Born) approximation the
full solution of the integral equations, which takes into account the final
state interaction, shows at low energies a 24% enhancement. The calculations
are based on the semirealistic Malfliet-Tjon and the realistic Paris and Bonn B
potentials. For comparison with earlier calculations we also present results
for the Yamaguchi potential. In the low-energy region a remarkable potential
dependence is observed, which vanishes at higher energies.Comment: 16 pages REVTeX, 8 postscript figures included, uses epsfig.st
Characterizing Exoplanets in the Visible and Infrared: A Spectrometer Concept for the EChO Space Mission
Transit-spectroscopy of exoplanets is one of the key observational techniques
to characterize the extrasolar planet and its atmosphere. The observational
challenges of these measurements require dedicated instrumentation and only the
space environment allows an undisturbed access to earth-like atmospheric
features such as water or carbon-dioxide. Therefore, several exoplanet-specific
space missions are currently being studied. One of them is EChO, the Exoplanet
Characterization Observatory, which is part of ESA's Cosmic Vision 2015-2025
program, and which is one of four candidates for the M3 launch slot in 2024. In
this paper we present the results of our assessment study of the EChO
spectrometer, the only science instrument onboard this spacecraft. The
instrument is a multi-channel all-reflective dispersive spectrometer, covering
the wavelength range from 400 nm to 16 microns simultaneously with a moderately
low spectral resolution. We illustrate how the key technical challenge of the
EChO mission - the high photometric stability - influences the choice of
spectrometer concept and drives fundamentally the instrument design. First
performance evaluations underline the fitness of the elaborated design solution
for the needs of the EChO mission.Comment: 20 pages, 8 figures, accepted for publication in the Journal of
Astronomical Instrumentatio
Electron Transport through T-Shaped Double-Dots System
Correlation effects on electron transport through a system of T-shaped
double-dots are investigated, for which only one of the dots is directly
connected to the leads. We evaluate the local density of states and the
conductance by means of the non-crossing approximation at finite temperatures
as well as the slave-boson mean field approximation at zero temperature. It is
found that the dot which is not directly connected to the leads considerably
influences the conductance, making its behavior quite different from the case
of a single-dot system. In particular, we find a novel phenomenon in the Kondo
regime with a small inter-dot coupling, i.e.
Fano-like suppression of the Kondo-mediated conductance, when two dot levels
coincide with each other energetically.Comment: 6 pages,7 figure
Microscopic nonequilibrium theory of double-barrier Josephson junctions
We study nonequilibrium charge transport in a double-barrier Josephson
junction, including nonstationary phenomena, using the time-dependent
quasiclassical Keldysh Green's function formalism. We supplement the kinetic
equations by appropriate time-dependent boundary conditions and solve the
time-dependent problem in a number of regimes. From the solutions,
current-voltage characteristics are derived. It is understood why the
quasiparticle current can show excess current as well as deficit current and
how the subgap conductance behaves as function of junction parameters. A
time-dependent nonequilibrium contribution to the distribution function is
found to cause a non-zero averaged supercurrent even in the presence of an
applied voltage. Energy relaxation due to inelastic scattering in the
interlayer has a prominent role in determining the transport properties of
double-barrier junctions. Actual inelastic scattering parameters are derived
from experiments. It is shown as an application of the microscopic model, how
the nature of the intrinsic shunt in double-barrier junctions can be explained
in terms of energy relaxation and the opening of Andreev channels.Comment: Accepted for Phys. Rev.
Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments
Unsynchronized cells of an essentially diploid strain of female Chinese hamster cells derived from lung tissue (CHL) were laser-UV-microirradiated (=257 nm) in the nucleus either at its central part or at its periphery. After 7–9 h postincubation with 0.5 mM caffeine, chromosome preparations were made in situ. Twenty-one and 29 metaphase spreads, respectively, with partial chromosome shattering (PCS) obtained after micro-irradiation at these two nuclear sites, were Q-banded and analyzed in detail. A positive correlation was observed between the frequency of damage of chromosomes and both their DNA content and length at metaphase. No significant difference was observed between the frequencies of damage obtained for individual chromosomes at either site of microirradiation. The frequency of joint damage of homologous chromosomes was low as compared to nonhomologous ones. Considerable variation was noted in different cells in the combinations of jointly shattered chromosomes. Evidence which justifies an interpretation of these data in terms of an interphase arrangement of chromosome territories is discussed. Our data strongly argue against somatic pairing as a regular event, and suggest a considerable variability of chromosome positions in different nuclei. However, present data do not exclude the possibility of certain non-random chromosomal arrangements in CHL-nuclei. The interphase chromosome distribution revealed by these experiments is compared with centromere-centromere, centromere-center and angle analyses of metaphase spreads and the relationship between interphase and metaphase arrangements of chromosomes is discussed
Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.
Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells
- …