16,975 research outputs found

    Development of sputtered techniques for thrust chambers

    Get PDF
    Techniques and materials were developed and evaluated for the fabrication and coating of advanced, long life, regeneratively cooled thrust chambers. Materials were analyzed as fillers for sputter application of OFHC copper as a closeout layer to channeled inner structures; of the materials evaluated, aluminum was found to provide the highest bond strength and to be the most desirable for chamber fabrication. The structures and properties were investigated of thick sputtered OFHC copper, 0.15 Zr-Cu, Al2O3,-Cu, and SiC-Cu. Layered structures of OFHC copper and 0.15 Zr-Cu were investigated as means of improving chamber inner wall fatigue life. The evaluation of sputtered Ti-5Al-2.5Sn, NASA IIb-11, aluminum and Al2O3-Al alloys as high strength chamber outer jackets was performed. Techniques for refurbishing degraded thrust chambers with OFHC copper and coating thrust chambers with protective ZrO2 and graded ZrO2-copper thermal barrier coatings were developed

    Liquid-induced damping of mechanical feedback effects in single electron tunneling through a suspended carbon nanotube

    Get PDF
    In single electron tunneling through clean, suspended carbon nanotube devices at low temperature, distinct switching phenomena have regularly been observed. These can be explained via strong interaction of single electron tunneling and vibrational motion of the nanotube. We present measurements on a highly stable nanotube device, subsequently recorded in the vacuum chamber of a dilution refrigerator and immersed in the 3He/4He mixture of a second dilution refrigerator. The switching phenomena are absent when the sample is kept in the viscous liquid, additionally supporting the interpretation of dc-driven vibration. Transport measurements in liquid helium can thus be used for finite bias spectroscopy where otherwise the mechanical effects would dominate the current.Comment: 4 pages, 3 figure

    Negative frequency tuning of a carbon nanotube nano-electromechanical resonator

    Get PDF
    A suspended, doubly clamped single wall carbon nanotube is characterized as driven nano-electromechanical resonator at cryogenic temperatures. Electronically, the carbon nanotube displays small bandgap behaviour with Coulomb blockade oscillations in electron conduction and transparent contacts in hole conduction. We observe the driven mechanical resonance in dc-transport, including multiple higher harmonic responses. The data shows a distinct negative frequency tuning at finite applied gate voltage, enabling us to electrostatically decrease the resonance frequency to 75% of its maximum value. This is consistently explained via electrostatic softening of the mechanical mode.Comment: 4 pages, 4 figures; submitted for the IWEPNM 2013 conference proceeding

    Time and energy constraints and the relationships between currencies in foraging theory

    Get PDF
    Measured foraging strategies often cluster around values that maximize the ratio of energy gained over energy spent while foraging (efficiency), rather than values that would maximize the long-term net rate of energy gain (rate). The reasons for this are not understood. This paper focuses on time and energy constraints while foraging to illustrate the relationship between efficiency and rate-maximizing strategies and develops models that provide a simple framework to analyze foraging strategies in two distinct foraging contexts. We assume that while capturing and ingesting food for their own use (which we term feeding), foragers behave so as to maximize the total net daily energetic gain. When gathering food for others or for storage (which we term provisioning), we assume that foragers behave so as to maximize the total daily delivery, subject to meeting their own energetic requirements. In feeding contexts, the behavior maximizing total net daily gain also maximizes efficiency when daily intake is limited by the assimilation capacity. In contrast, when time available to forage sets the limit to gross intake, the behavior maximizing total net daily gain also maximizes rate. In provisioning contexts, when daily delivery is constrained by the energy needed to power self-feeding, maximizing efficiency ensures the highest total daily delivery. When time needed to recoup energetic expenditure limits total delivery, a low self-feeding rate relative to the rate of energy expenditure favors efficient strategies. However, as the rate of self-feeding increases, foraging behavior deviates from efficiency maximization in the direction predicted by rate maximization. Experimental manipulations of the rate of self-feeding in provisioning contexts could be a powerful tool to explore the relationship between rate and efficiency-maximizing behavio

    Quantum Cournot equilibrium for the Hotelling-Smithies model of product choice

    Full text link
    This paper demonstrates the quantization of a spatial Cournot duopoly model with product choice, a two stage game focusing on non-cooperation in locations and quantities. With quantization, the players can access a continuous set of strategies, using continuous variable quantum mechanical approach. The presence of quantum entanglement in the initial state identifies a quantity equilibrium for every location pair choice with any transport cost. Also higher profit is obtained by the firms at Nash equilibrium. Adoption of quantum strategies rewards us by the existence of a larger quantum strategic space at equilibrium.Comment: 13 pages, 6 tables, 8 figure

    Mapping the spin-dependent electron reflectivity of Fe and Co ferromagnetic thin films

    Full text link
    Spin Polarized Low Energy Electron Microscopy is used as a spin dependent spectroscopic probe to study the spin dependent specular reflection of a polarized electron beam from two different magnetic thin film systems: Fe/W(110) and Co/W(110). The reflectivity and spin-dependent exchange-scattering asymmetry are studied as a function of electron kinetic energy and film thickness, as well as the time dependence. The largest value of the figure of merit for spin polarimetry is observed for a 5 monolayer thick film of Co/W(110) at an electron kinetic energy of 2eV. This value is 2 orders of magnitude higher than previously obtained with state of the art Mini-Mott polarimeter. We discuss implications of our results for the development of an electron-spin-polarimeter using the exchange-interaction at low energy.Comment: 5 pages, 4 figure

    Critical collapse and the primordial black hole initial mass function

    Get PDF
    It has normally been assumed that primordial black holes (PBHs) always form with mass approximately equal to the mass contained within the horizon at that time. Recent work studying the application of critical phenomena in gravitational collapse to PBH formation has shown that in fact, at a fixed time, PBHs with a range of masses are formed. When calculating the PBH initial mass function it is usually assumed that all PBHs form at the same horizon mass. It is not clear, however, that it is consistent to consider the spread in the mass of PBHs formed at a single horizon mass, whilst neglecting the range of horizon masses at which PBHs can form. We use the excursion set formalism to compute the PBH initial mass function, allowing for PBH formation at a range of horizon masses, for two forms of the density perturbation spectrum. First we examine power-law spectra with n>1n>1, where PBHs form on small scales. We find that, in the limit where the number of PBHs formed is small enough to satisfy the observational constraints on their initial abundance, the mass function approaches that found by Niemeyer and Jedamzik under the assumption that all PBHs form at a single horizon mass. Second, we consider a flat perturbation spectrum with a spike at a scale corresponding to horizon mass ∼0.5M⊙\sim 0.5 M_{\odot}, and compare the resulting PBH mass function with that of the MACHOs (MAssive Compact Halo Objects) detected by microlensing observations. The predicted mass spectrum appears significantly wider than the steeply-falling spectrum found observationally.Comment: 8 pages RevTeX file with ten figures incorporated (uses RevTeX and epsf). Minor changes to dicussion onl

    Effectiveness of a 10-day melarsoprol schedule for the treatment of late-stage human African trypanosomiasis: confirmation from a multinational study (IMPAMEL II).

    Get PDF
    BACKGROUND: Treatment of late-stage human African trypanosomiasis (HAT) with melarsoprol can be improved by shortening the regimen. A previous trial demonstrated the safety and efficacy of a 10-day treatment schedule. We demonstrate the effectiveness of this schedule in a noncontrolled, multinational drug-utilization study. METHODS: A total of 2020 patients with late-stage HAT were treated with the 10-day melarsoprol schedule in 16 centers in 7 African countries. We assessed outcome on the basis of major adverse events and the cure rate after treatment and during 2 years of follow-up. RESULTS: The cure rate 24 h after treatment was 93.9%; 2 years later, it was 86.2%. However, 49.3% of patients were lost to follow-up. The overall fatality rate was 5.9%. Of treated patients, 8.7% had an encephalopathic syndrome that was fatal 45.5% of the time. The rate of severe bullous and maculopapular eruptions was 0.8% and 6.8%, respectively. CONCLUSIONS: The 10-day treatment schedule was well implemented in the field and was effective. It reduces treatment duration, drug amount, and hospitalization costs per patient, and it increases treatment-center capacity. The shorter protocol has been recommended by the International Scientific Council for Trypanosomiasis Research and Control for the treatment of late-stage HAT caused by Trypanosoma brucei gambiense
    • …
    corecore