34 research outputs found

    GRAIL Refinements to Lunar Seismic Structure

    Get PDF
    Joint interpretation of disparate geophysical datasets helps to reduce drawbacks that can result from analyzing them individually. The Apollo seismic network was situated on the lunar nearside surface in a roughly equilateral triangle having sides approximately 1000 km long, with stations 12/14 nearly colocated at one corner. Due to this limited geographical extent, nearsurface ray coverage from moonquakes is low, but increases with depth. In comparison, gravity surveys and their resulting gravity anomaly maps have traditionally offered optimal resolution at crustal depths. Gravimetric maps and seismic data sets are therefore well suited to joint inversion, since the complementary information reduces inherent model ambiguity. Previous joint inversions of the Apollo seismic data (seismic phase arrival times) and Clementine or Lunar Prospectorderived gravity data (mass and moment of inertia) attempted to recover the subsurface structure of the Moon by focusing on hypothetical lunar compositions that explore the density/velocity relationship. These efforts typically search for the best fitting thermodynamically calculated velocity/density model, allowing variables like core size, velocity, and/or composition to vary freely. Seismic velocity profiles previously derived from the Apollo seismic data through inversion of travel times vary both in the depth of the crust and mantle layers, and the seismic velocities and densities assigned to those layers. The lunar mass and moment of inertia likewise only constrain gross variations in the density profile beyond that of a uniform density sphere. As a result, composition and structure models previously obtained by jointly inverting these data retain the original uncertainties inherent in the input data sets. We will perform a joint inversion of Apollo seismic delay times and gravity data collected by the GRAIL lunar gravity mission, in order to recover seismic velocities and density as a function of latitude, longitude, and depth within the Moon. We will relate density to seismic velocity using a linear relationship that is allowed to be depthdependent. The corresponding coefficient (B) can reflect a variety of material properties that vary with depth, including temperature and composition. The inversion seeks to recover the set of density, velocity, and Bcoefficient perturbations that minimize (in a leastsquares sense) the difference between the observed and calculated data

    GRAIL Refinements to Lunar Seismic Structure

    Get PDF
    Joint interpretation of disparate geophysical datasets helps reduce drawbacks that can result from analyzing them individually. The Apollo seismic network was situated on the lunar nearside surface in a roughly equilateral triangle having sides approximately 1000 km long, with stations 12/14 nearly co-located at one corner. Due to this limited geographical extent, near-surface ray coverage from moonquakes is low, but increases with depth. In comparison, gravity surveys and their resulting gravity anomaly maps have traditionally offered optimal resolution at crustal depths. Gravimetric maps and seismic data sets are therefore well suited to joint inversion, since the complementary information reduces inherent model ambiguity. Previous joint inversions of the Apollo seismic data (seismic phase arrival times) and Clementine- or Lunar Prospector-derived gravity data (mass and moment of inertia) attempted to recover the subsurface structure of the Moon by focusing on hypothetical lunar compositions that explored the density/velocity relationship. These efforts typically searched for the best fitting thermodynamically calculated velocity/density model, and allowed variables like core size, velocity, and/or composition to vary freely. Seismic velocity profiles derived from the Apollo seismic data through travel time inversion vary both in the depth of the crust and mantle layers, and the seismic velocities and densities assigned to those layers. The lunar mass and moment of inertia likewise only constrain gross variations in the density profile beyond that of a uniform density sphere. As a result, composition and structure models previously obtained by jointly inverting these data retain the original uncertainties inherent in the input data sets. We perform a joint inversion of Apollo seismic delay times and gravity data collected by the GRAIL lunar gravity mission, in order to recover seismic velocity and density as a function of latitude, longitude, and depth within the Moon. We relate density (p) to seismic velocity (v) using a depth-dependent linear relationship. The corresponding coefficient (B) can reflect a variety of material properties, including temperature and composition. The inversion seeks to recover the set of p, v, and B perturbations that minimize (in a least-squares sense) the difference between the observed and calculated data

    Dynamic lithosphere within the Great Basin

    Get PDF
    To place new constraints on the short-term, broad-scale lithospheric evolution of plate interiors, we utilize broadband seismic data from the Great Basin region of the Western United States to produce high-resolution images of the crust and upper mantle. Our results suggest that parts of the Great Basin lithosphere has been removed, likely via inflow of hot asthenosphere as subduction of the Farallon spreading center occurred and the region extended. In our proposed model, fragments of thermal lithosphere removed by this process were gravitationally unstable and subsequently sank into the underlying mantle, leaving behind less dense, stronger, chemically depleted lithosphere. This destabilization process promotes volcanism, deformation, and the reworking of continental lithosphere inboard from plate margins. Our results provide evidence for a new mechanism of lithospheric evolution that is likely common and significant in postsubduction tectonic settings

    Further Constraints and Uncertainties on the Deep Seismic Structure of the Moon

    Get PDF
    The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972, that continuously recorded lunar ground motion until late 1977. The APSE data provide a unique opportunity for investigating the interior of a planet other than Earth, generating the most direct constraints on the elastic structure, and hence the thermal and compositional evolution of the Moon. Owing to the lack of far side moonquakes, past seismic models of the lunar interior were unable to constrain the lowermost 500 km of the interior. Recently, array methodologies aimed at detecting deep lunar seismic reflections found evidence for a lunar core, providing an elastic model of the deepest lunar interior consistent with geodetic parameters. Here we study the uncertainties in these models associated with the double array stacking of deep moonquakes for imaging deep reflectors in the Moon. We investigate the dependency of the array stacking results on a suite of parameters, including amplitude normalization assumptions, polarization filters, assumed velocity structure, and seismic phases that interfere with our desired target phases. These efforts are facilitated by the generation of synthetic seismograms at high frequencies (approx. 1Hz), allowing us to directly study the trade-offs between different parameters. We also investigate expected amplitudes of deep reflections relative to direct P and S arrivals, including predictions from arbitrarily oriented focal mechanisms in our synthetics. Results from separate versus combined station stacking help to establish the robustness of stacks. Synthetics for every path geometry of data were processed identically to that done with data. Different experiments were aimed at examining various processing assumptions, such as adding random noise to synthetics and mixing 3 components to some degree. The principal stacked energy peaks put forth in recent work persist, but their amplitude (which maps into reflector impedance contrast) and timing (which maps into reflector depth) depend on factors that are not well constrained -- most notably, the velocity structure of the overlying lunar interior. Thus, while evidence for the lunar core remains strong, the depths of imaged reflectors have associated uncertainties that will require new seismic data and observations to constrain. These results strongly advocate further investigations on the Moon to better resolve the interior (e.g., Selene missions), for the Moon apparently has a rich history of construction and evolution that is inextricably tied to that of Earth

    3-D synthetic modelling and observations of anisotropy effects on SS precursors: implications for mantle deformation in the transition zone

    Get PDF
    The Earth's mantle transition zone (MTZ) plays a key role in the thermal and compositional interactions between the upper and lower mantle. Seismic anisotropy provides useful information about mantle deformation and dynamics across the MTZ. However, seismic anisotropy in the MTZ is difficult to constrain from surface wave or shear wave splitting measurements. Here, we investigate the sensitivity to anisotropy of a body wave method, SS precursors, through 3-D synthetic modelling and apply it to real data. Our study shows that the SS precursors can distinguish the anisotropy originating from three depths: shallow upper mantle (80–220 km), deep upper mantle above 410 km, and MTZ (410–660 km). Synthetic resolution tests indicate that SS precursors can resolve ≥3 per cent azimuthal anisotropy where data have an average signal-to-noise ratio (SNR = 7) and sufficient azimuthal coverage. To investigate regional sensitivity, we apply the stacking and inversion methods to two densely sampled areas: the Japan subduction zone and a central Pacific region around the Hawaiian hotspot. We find evidence for significant VS anisotropy (15.3 ± 9.2 per cent) with a trench-perpendicular fast direction (93° ± 5°) in the MTZ near the Japan subduction zone. We attribute the azimuthal anisotropy to the grain-scale shape-preferred orientation of basaltic materials induced by the shear deformation within the subducting slab beneath NE China. In the central Pacific study region, there is a non-detection of MTZ anisotropy, although modelling suggests the data coverage should allow us to resolve at least 3 per cent anisotropy. Therefore, the Hawaiian mantle plume has not produced detectable azimuthal anisotropy in the MTZ

    Towards Simulating a Realistic Planetary Seismic Wavefield: The Contribution of the Megaregolith and Low-Velocity Waveguides

    Get PDF
    Lunar seismograms are distinctly different from their terrestrial counterparts. The Apollo lunar seismometers recorded moonquakes without distinct P- or S-wave arrivals; instead waves arrive as a diffuse coda that decays over several hours making the identification of body waves difficult. The unusual character of the lunar seismic wavefield is generally tied to properties of the megaregolith: it consists of highly fractured and broken crustal rock, the result of extensive bombardment of the Moon. The megaregolith extends several kilometers into the lunar crust, possibly into the mantle in some regions, and is covered by a thin coating of fine-scale dust. These materials possess very low seismic velocities that strongly scatter the seismic wavefield at high frequencies. Directly modeling the effects of the megaregolith to simulate an accurate lunar seismic wavefield is a challenging computational problem, owing to the inherent 3-D nature of the problem and the high frequencies (greater than 1 Hz) required. Here we focus on modeling the long duration code, studying the effects of the low velocities found in the megaregolith. We produce synthetic seismograms using 1-D slowness integration methodologies, GEMINI and reflectivity, and a 3-D Cartesian finite difference code, Wave Propagation Program, to study the effect of thin layers of low velocity on the surface of a planet. These codes allow us generate seismograms with dominant frequencies of approximately 1 Hz. For background lunar seismic structure we explore several models, including the recent model of Weber et al., Science, 2011. We also investigate variations in megaregolithic thickness, velocity, attenuation, and seismogram frequency content. Our results are compared to the Apollo seismic dataset, using both a cross correlation technique and integrated envelope approach to investigate coda decay. We find our new high frequency results strongly support the hypothesis that the long duration of the lunar seismic codes is generated by the presence of the low velocity megaregolith, and that the diffuse arrivals are a combination of scattered energy and multiple reverberations within this layer. The 3-D modeling indicates the extreme surface topography of the Moon adds only a small contribution to scattering effects, though local geology may play a larger role. We also study the effects of the megaregolith on core reflected and converted phases and other body waves. Our analysis indicates detection of core interacting arrivals with a polarization filter technique is robust and lends the possibility of detecting other body waves from the Moon

    GRAIL Refinements to Lunar Seismic Structure

    Get PDF
    A method to enhance and detect subtle seismic arrivals typically used in terrestrial seismology, is to stack seismograms that have been time shifted to the predicted arrival time of a hypothetical phase of interest. We previously applied this array processing approach to the Apollo lunar seismic data, providing the first direct constraint on the size and state of the Moon's core. The method used travel time predictions made from pre-existing estimates of the crust and mantle velocities and densities and assumed that each of the Moons layers ia a uniform shell with no lateral variation or heterogeneity. In reality the structural properties of the Moon are likely inhomogeneous and vary both laterally and with depth

    Toward a mineral physics reference model for the Moon's core

    Get PDF
    International audienceIron is the main constituent of terrestrial planetary cores, taking on a hexagonal closed packed structure under the conditions of Earth’s inner core, and a face-centered cubic (fcc) structure at the more moderate pressures of smaller bodies, such as the Moon, Mercury, or Mars. Here we present sound velocity and density measurements of fcc iron at pressures and temperatures characteristic of small planetary interiors. The results indicate that the seismic velocities currently proposed for the Moon’s inner core are well below those of fcc iron or plausible iron alloys. Our dataset provides strong constraints to seismic models of the lunar core and cores of small telluric planets, and allows us to build a direct compositional and velocity model of the Moon’s core

    Seismic detection of the martian core by InSight

    Get PDF
    A plethora of geophysical, geo- chemical, and geodynamical observations indicate that the terrestrial planets have differentiated into silicate crusts and mantles that surround a dense core. The latter consists primarily of Fe and some lighter alloying elements (e.g., S, Si, C, O, and H) [1]¿. The Martian meteorites show evidence of chalcophile element depletion, suggesting that the otherwise Fe-Ni- rich core likely contains a sulfide component, which influences physical state
    corecore