5 research outputs found

    Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

    Get PDF
    Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the interacting effects of soil physical and chemical properties with climate. A hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining endogenous disturbance levels, species composition, and forest productivity across the Amazon Basin. © 2012 Author(s). CC Attribution 3.0 License

    Annual ecosystem respiration budget for a Pinus sylvestris stand in central Siberia

    No full text
    Using a ground-based and an above-canopy eddy covariance system in addition to stem respiration measurements, the annual respiratory fluxes attributable to soil, stems and foliage were determined for a Scots pine (Pinus sylvestris L.) forest growing in central Siberia. Night-time foliar respiration was estimated on the basis of the difference between fluxes measured below and above the canopy and the stem respiration measurements. Comparison of the effects of night-time turbulence on measured CO<sub>2</sub> fluxes showed flux loss above the canopy at low wind speeds, but no such effect was observed for the ground-based eddy system. This suggests that problems with flow homogeneity or flux divergence (both of which would be expected to be greater above the canopy than below) were responsible for above-canopy losses under these conditions. After correcting for this, a strong seasonality in foliar respiration was observed. This was not solely attributable to temperature variations, with intrinsic foliar respiratory capacities being much greater in spring and autumn. The opposite pattern was observed for stem respiration, with the intrinsic respiratory capacity being lower from autumn through early spring. Maximum respiratory activity was observed in early summer. This was not simply associated with a response to higher temperatures but seemed closely linked with cambial activity and the development of new xylem elements. Soil respiration rates exhibited an apparent high sensitivity to temperature, with seasonal data implying a Q(10) of about 7. We interpret this as reflecting covarying changes in soil microbial activity and soil temperatures throughout the snow- free season. Averaged over the two study years (1999 and 2000), the annual respiratory flux was estimated at 38.3 mol C m(-2) a(-1). Of this 0.61 was attributable to soil respiration, with stem respiration accounting for 0.21 and foliar respiration 0.18

    Spectroscopic Characterization of Rocksalt-Type Aluminum Nitride

    No full text
    Starting from nanocrystalline and submicron wurtzite-aluminum nitride (w-AlN) powder rocksalt structure (rs-AlN) samples were synthesized by two different methods of shock wave recovery experiments. The resulting samples contained up to 86% rs-AlN, stable at room temperature, giving for the first time the possibility to comprehensively characterize the material by powder X-ray diffraction, Fourier transform infrared (IR), Raman, and <sup>27</sup>Al NMR spectroscopy. Raman and IR modes were calculated by density functional theory, allowing for the interpretation of the respective experimental spectra. By <sup>27</sup>Al NMR the chemical shift of rs-AlN was determined, and the quadrupolar coupling constant was estimated
    corecore