95 research outputs found

    Components of functional diversity revisited: A new classification and its theoretical and practical implications

    Get PDF
    Functional diversity is regarded as a key concept for understanding the link between ecosystem function and biodiversity. The different and ecologically well-defined aspects of the concept are reflected by the so-called functional components, for example, functional richness and divergence. Many authors proposed that components be distinguished according to the multivariate technique on which they rely, but more recent studies suggest that several multivariate techniques, providing different functional representations (such as dendrograms and ordinations) of the community can in fact express the same functional component. Here, we review the relevant literature and find that (1) general ecological acceptance of the field is hampered by ambiguous terminology and (2) our understanding of the role of multivariate techniques in defining components is unclear. To address these issues, we provide new definitions for the three basic functional diversity components namely functional richness, functional divergence and functional regularity. In addition, we present a classification of presence-/absence-based approaches suitable for quantifying these components. We focus exclusively on the binary case for its relative simplicity. We find illogical, as well as logical but unused combinations of components and representations; and reveal that components can be quantified almost independently from the functional representation of the community. Finally, theoretical and practical implications of the new classification are discussed

    On the operative use of community overlap in analyzing incidence data

    Get PDF
    Although overlap of communities is a key issue in studies ranging from community ecology to biogeography, a clear definition of community overlap and related terms hinder the development of the field. The absence of a unified terminology is remarkable even when the overlap of a pair or multiple communities is characterized. As a remedy, I suggest a definition of community overlap and two measures of it (number of overlapping species and total overlap size). Although both measures quantify different aspects of community overlap, in studying pairs of communities they yield identical results. The present findings demonstrate the need for a unified terminology in research on community overlap as well as for pairwise and multiple measures for quantifying the phenomenon

    Intensity of parasitic mite infection decreases with hibernation duration of the host snail

    Get PDF
    Temperature can be a limiting factor on parasite development. Riccardoella limacum, a haematophagous mite, lives in the mantle cavity of helicid land snails. The prevalence of infection by R. limacum in populations of the land snail Arianta arbustorum is highly variable (0-78%) in Switzerland. However, parasitic mites do not occur in host populations at altitudes of 1290 m or higher. It has been hypothesized that the host's hibernation period might be too long at high elevations for mites and their eggs to survive. To test this hypothesis, we experimentally infected snails and allowed them to hibernate at 4°C for periods of 4-7 months. Winter survival of host snails was negatively affected by R. limacum. The intensity of mite infection decreased with increasing hibernation duration. Another experiment with shorter recording intervals revealed that mites do not leave the host when it buries in the soil at the beginning of hibernation. The number of mites decreased after 24 days of hibernation, whereas the number of eggs attached to the lung tissue remained constant throughout hibernation. Thus, R. limacum survives the winter in the egg stage in the host. Low temperature at high altitudes may limit the occurrence of R. limacu

    The ternary diagram of functional diversity

    Get PDF
    Among the many diversity indices in the ecologist toolbox, measures that can be partitioned into additive terms are particularly useful as the different components can be related to different ecological processes shaping community structure. In this paper, an additive diversity decomposition is proposed to partition the diversity structure of a given community into three complementary fractions: functional diversity, functional redundancy and species dominance. These three components sum up to one. Therefore, they can be used to portray the community structure in a ternary diagram. Since the identification of community-level patterns is an essential step to investigate the main drivers of species coexistence, the ternary diagram of functional diversity can be used to relate different facets of diversity to community assembly processes more exhaustively than looking only at one index at a time. The value of the proposed diversity decomposition is demonstrated by the analysis of actual abundance data on plant assemblages sampled in grazed and ungrazed grasslands in Tuscany (Central Italy)

    Habitat filtering determines spatial variation of macroinvertebrate community traits in northern headwater streams

    Get PDF
    Although our knowledge of the spatial distribution of stream organisms has been increasing rapidly in the last decades, there is still little consensus about trait-based variability of macroinvertebrate communities within and between catchments in near-pristine systems. Our aim was to examine the taxonomic and trait based stability vs. variability of stream macroinvertebrates in three high-latitude catchments in Finland. The collected taxa were assigned to unique trait combinations (UTCs) using biological traits. We found that only a single or a highly limited number of taxa formed a single UTC, suggesting a low degree of redundancy. Our analyses revealed significant differences in the environmental conditions of the streams among the three catchments. Linear models, rarefaction curves and beta-diversity measures showed that the catchments differed in both alpha and beta diversity. Taxon- and trait-based multivariate analyses also indicated that the three catchments were significantly different in terms of macroinvertebrate communities. All these findings suggest that habitat filtering, i.e., environmental differences among catchments, determines the variability of macroinvertebrate communities, thereby contributing to the significant biological differences among the catchments. The main implications of our study is that the sensitivity of trait-based analyses to natural environmental variation should be carefully incorporated in the assessment of environmental degradation, and that further studies are needed for a deeper understanding of trait-based community patterns across near-pristine streams

    Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research

    Get PDF

    Effect of sampling effort and sampling frequency on the composition of the planktonic crustacean assemblage: a case study of the river Danube

    Get PDF
    Although numerous studies have focused on the seasonal dynamics of riverine zooplankton, little is known about its short-term variation. In order to examine the effects of sampling frequency and sampling effort, microcrustacean samples were collected at daily intervals between 13 June and 21 July of 2007 in a parapotamal side arm of the river Danube, Hungary. Samples were also taken at biweekly intervals from November 2006 to May 2008. After presenting the community dynamics, the effect of sampling effort was evaluated with two different methods; the minimal sample size was also estimated. We introduced a single index (potential dynamic information loss; to determine the potential loss of information when sampling frequency is reduced. The formula was calculated for the total abundance, densities of the dominant taxa, adult/larva ratios of copepods and for two different diversity measures. Results suggest that abundances may experience notable fluctuations even within 1 week, as do diversities and adult/larva ratios
    corecore