72 research outputs found

    IFN regulatory factor 4 controls post-ischemic inflammation and prevents chronic kidney disease

    Get PDF
    Ischemia reperfusion injury (IRI) of the kidney results in interferon regulatory factor 4 (IRF4)–mediated counter-regulation of the acute inflammatory response. Beyond that, IRF4 exerts important functions in controlling the cytokine milieu, T-cell differentiation, and macrophage polarization. The latter has been implicated in tissue remodeling. It therefore remains elusive what the role of IRF4 is in terms of long-term outcome following IRI. We hypothesized that an inability to resolve chronic inflammation in Irf4−/− mice would promote chronic kidney disease (CKD) progression. To evaluate the effects of IRF4 in chronic upon acute injury in vivo, a mouse model of chronic injury following acute IRI was employed. The expression of Irf4 increased within 10 days after IRI in renal tissue. Both mRNA and protein levels remained high up to 5 weeks upon IRI, suggesting a regulatory function in the chronic phase. Mice deficient in IRF4 display increased tubular cell loss and defective clearance of infiltrating macrophages. These phenomena were associated with increased expression of pro-inflammatory macrophage markers together with reduced expression of alternatively activated macrophage markers. In addition, IRF4-deficient mice showed defective development of alternatively activated macrophages. Hints of a residual M1 macrophage signature were further observed in human biopsy specimens of patients with hypertensive nephropathy vs. living donor specimens. Thus, IRF4 restricts CKD progression and kidney fibrosis following IRI, potentially by enabling M2 macrophage polarization and restricting a Th1 cytokine response. Deteriorated alternative macrophage subpopulations in Irf4−/− mice provoke chronic intrarenal inflammation, tubular epithelial cell loss, and renal fibrosis in the long course after IRI in mice. The clinical significance of these finding for human CKD remains uncertain at present and warrants further studies

    Worsening calcification propensity precedes all-cause and cardiovascular mortality in haemodialyzed patients

    Get PDF
    A novel in-vitro test (T-50-test) assesses ex-vivo serum calcification propensity which predicts mortality in HD patients. The association of longitudinal changes of T-50 with all-cause and cardiovascular mortality has not been investigated. We assessed T-50 in paired sera collected at baseline and at 24 months in 188 prevalent European HD patients from the ISAR cohort, most of whom were Caucasians. Patients were followed for another 19 [interquartile range: 11-37] months. Serum T-50 exhibited a significant decline between baseline and 24 months (246 +/- 64 to 190 +/- 68 minutes;p < 0.001). With serum Delta-phosphate showing the strongest independent association with declining T-50 (r = -0.39;p < 0.001) in multivariable linear regression. The rate of decline of T-50 over 24 months was a significant predictor of all-cause (HR = 1.51 per 1SD decline, 95% CI: 1.04 to 2.2;p = 0.03) and cardiovascular mortality (HR = 2.15;95% CI: 1.15 to 3.97;p = 0.02) in Kaplan Meier and multivariable Cox-regression analysis, while cross-sectional T-50 at inclusion and 24 months were not. Worsening serum calcification propensity was an independent predictor of mortality in this small cohort of prevalent HD patients. Prospective larger scaled studies are needed to assess the value of calcification propensity as a longitudinal parameter for risk stratification and monitoring of therapeutic interventions

    Pretransplant Serum Uromodulin and Its Association with Delayed Graft Function Following Kidney Transplantation—A Prospective Cohort Study

    Get PDF
    Delayed graft function (DGF) following kidney transplantation is associated with increased risk of graft failure, but biomarkers to predict DGF are scarce. We evaluated serum uromodulin (sUMOD), a potential marker for tubular integrity with immunomodulatory capacities, in kidney transplant recipients and its association with DGF. We included 239 kidney transplant recipients and measured sUMOD pretransplant and on postoperative Day 1 (POD1) as independent variables. The primary outcome was DGF, defined as need for dialysis within one week after transplantation. In total, 64 patients (27%) experienced DGF. In multivariable logistic regression analysis adjusting for recipient, donor and transplant associated risk factors each 10 ng/mL higher pretransplant sUMOD was associated with 47% lower odds for DGF (odds ratio (OR) 0.53, 95% confidence interval (95%-CI) 0.30–0.82). When categorizing pretransplant sUMOD into quartiles, the quartile with the lowest values had 4.4-fold higher odds for DGF compared to the highest quartile (OR 4.41, 95%-CI 1.54–13.93). Adding pretransplant sUMOD to a model containing established risk factors for DGF in multivariable receiver-operating-characteristics (ROC) curve analysis, the area-under-the-curve improved from 0.786 [95%-CI 0.723–0.848] to 0.813 [95%-CI 0.755–0.871, p = 0.05]. SUMOD on POD1 was not associated with DGF. In conclusion, higher pretransplant sUMOD was independently associated with lower odds for DGF, potentially serving as a non-invasive marker to stratify patients according to their risk for developing DGF early in the setting of kidney transplantation

    Cardiovascular Mortality Can Be Predicted by Heart Rate Turbulence in Hemodialysis Patients

    Get PDF
    Background: Excess mortality in hemodialysis patients is mostly of cardiovascular origin. We examined the association of heart rate turbulence (HRT), a marker of baroreflex sensitivity, with cardiovascular mortality in hemodialysis patients. Methods: A population of 290 prevalent hemodialysis patients was followed up for a median of 3 years. HRT categories 0 (both turbulence onset [TO] and slope [TS] normal), 1 (TO or TS abnormal), and 2 (both TO and TS abnormal) were obtained from 24 h Holter recordings. The primary end-point was cardiovascular mortality. Associations of HRT categories with the endpoints were analyzed by multivariable Cox regression models including HRT, age, albumin, and the improved Charlson Comorbidity Index for hemodialysis patients. Multivariable linear regression analysis identified factors associated with TO and TS. Results: During the follow-up period, 20 patients died from cardiovascular causes. In patients with HRT categories 0, 1 and 2, cardiovascular mortality was 1, 10, and 22%, respectively. HRT category 2 showed the strongest independent association with cardiovascular mortality with a hazard ratio of 19.3 (95% confidence interval: 3.69-92.03;P < 0.001). Age, calcium phosphate product, and smoking status were associated with TO and TS. Diabetes mellitus and diastolic blood pressure were only associated with TS. Conclusion: Independent of known risk factors, HRT assessment allows identification of hemodialysis patients with low, intermediate, and high risk of cardiovascular mortality. Future prospective studies are needed to translate risk prediction into risk reduction in hemodialysis patients

    Comparable cellular and humoral immunity upon homologous and heterologous COVID-19 vaccination regimens in kidney transplant recipients

    Get PDF
    BackgroundKidney transplant recipients (KTRs) are at high risk for a severe course of coronavirus disease 2019 (COVID-19); thus, effective vaccination is critical. However, the achievement of protective immunogenicity is hampered by immunosuppressive therapies. We assessed cellular and humoral immunity and breakthrough infection rates in KTRs vaccinated with homologous and heterologous COVID-19 vaccination regimens.MethodWe performed a comparative in-depth analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–specific T-cell responses using multiplex Fluorospot assays and SARS-CoV-2-specific neutralizing antibodies (NAbs) between three-times homologously (n = 18) and heterologously (n = 8) vaccinated KTRs.ResultsWe detected SARS-CoV-2-reactive T cells in 100% of KTRs upon third vaccination, with comparable frequencies, T-cell expression profiles, and relative interferon γ and interleukin 2 production per single cell between homologously and heterologously vaccinated KTRs. SARS-CoV-2-specific NAb positivity rates were significantly higher in heterologously (87.5%) compared to homologously vaccinated (50.0%) KTRs (P &lt; 0.0001), whereas the magnitudes of NAb titers were comparable between both subcohorts after third vaccination. SARS-CoV-2 breakthrough infections occurred in equal numbers in homologously (38.9%) and heterologously (37.5%) vaccinated KTRs with mild-to-moderate courses of COVID-19.ConclusionOur data support a more comprehensive assessment of not only humoral but also cellular SARS-CoV-2-specific immunity in KTRs to provide an in-depth understanding about the COVID-19 vaccine–induced immune response in a transplant setting

    Macrophage-specific MCPIP1/Regnase-1 attenuates kidney ischemia-reperfusion injury by shaping the local inflammatory response and tissue regeneration

    Get PDF
    Sterile inflammation either resolves the initial insult or leads to tissue damage. Kidney ischemia/reperfusion injury (IRI) is associated with neutrophilic infiltration, enhanced production of inflammatory mediators, accumulation of necrotic cells and tissue remodeling. Macrophage-dependent microenvironmental changes orchestrate many features of the immune response and tissue regeneration. The activation status of macrophages is influenced by extracellular signals, the duration and intensity of the stimulation, as well as various regulatory molecules. The role of macrophage-derived monocyte chemoattractant protein-induced protein 1 (MCPIP1), also known as Regnase-1, in kidney ischemia-reperfusion injury (IRI) and recovery from sterile inflammation remains unresolved. In this study, we showed that macrophage-specific Mcpip1 deletion significantly affects the kidney phenotype. Macrophage-specific Mcpip1 transgenic mice displayed enhanced inflammation and loss of the tubular compartment upon IRI. We showed that MCPIP1 modulates sterile inflammation by negative regulation of Irf4 expression and accumulation of IRF4+ cells in the tissue and, consequently, suppresses the post-ischemic kidney immune response. Thus, we identified MCPIP1 as an important molecular sentinel of immune homeostasis in experimental acute kidney injury (AKI) and renal fibrosis

    Blood Pressure Control: A Facelift for Macrophages?

    No full text
    corecore