43 research outputs found

    Cancer Patient Experience of Uncertainty While Waiting for Genome Sequencing Results.

    Full text link
    There is limited knowledge about cancer patients' experiences of uncertainty while waiting for genome sequencing results, and whether prolonged uncertainty contributes to psychological factors in this context. To investigate uncertainty in patients with a cancer of likely hereditary origin while waiting for genome sequencing results, we collected questionnaire and interview data at baseline, and at three and 12 months follow up (prior to receiving results). Participants (N = 353) had negative attitudes towards uncertainty (M = 4.03, SD 0.68) at baseline, and low levels of uncertainty at three (M = 8.23, SD 7.37) and 12 months (M = 7.95, SD 7.64). Uncertainty about genome sequencing did not change significantly over time [t(210) = 0.660, p = 0.510]. Greater perceived susceptibility for cancer [r(348) = 0.14, p < 0.01], fear of cancer recurrence [r(348) = 0.19, p < 0.01], perceived importance of genome sequencing [r(350) = 0.24, p < 0.01], intention to change behavior if a gene variant indicating risk is found [r(349) = 0.29, p < 0.01], perceived ability to cope with results [r(349) = 0.36, p < 0.01], and satisfaction with decision to have genome sequencing [r(350) = 0.52, p < 0.01] were significantly correlated with negative attitudes towards uncertainty at baseline. Multiple primary cancer diagnoses [B = -2.364 [-4.238, -0.491], p = 0.014], lower perceived ability to cope with results [B = -0.1.881 [-3.403, -0.359], p = 0.016] at baseline, greater anxiety about genome sequencing (avoidance) [B = 0.347 [0.148, 0.546], p = 0.0012] at 3 months, and greater perceived uncertainty about genome sequencing [B = 0.494 [0.267, 0.721] p = 0.000] at 3 months significantly predicted greater perceived uncertainty about genome sequencing at 12 months. Greater perceived uncertainty about genome sequencing at 3 months significantly predicted greater anxiety (avoidance) about genome sequencing at 12 months [B = 0.291 [0.072, 0.509], p = 0.009]. Semi-structured interviews revealed that while participants were motivated to pursue genome sequencing as a strategy to reduce their illness and risk uncertainty, genome sequencing generated additional practical, scientific and personal uncertainties. Some uncertainties were consistently discussed over the 12 months, while others emerged over time. Similarly, some uncertainty coping strategies were consistent over time, while others emerged while patients waited for their genome sequencing results. This study demonstrates the complexity of uncertainty generated by genome sequencing for cancer patients and provides further support for the inter-relationship between uncertainty and anxiety. Helping patients manage their uncertainty may ameliorate psychological morbidity

    Predicting vaccine effectiveness against severe COVID-19 over time and against variants: a meta-analysis

    Full text link
    Vaccine protection from symptomatic SARS-CoV-2 infection has been shown to be strongly correlated with neutralising antibody titres; however, this has not yet been demonstrated for severe COVID-19. To explore whether this relationship also holds for severe COVID-19, we performed a systematic search for studies reporting on protection against different SARS-CoV-2 clinical endpoints and extracted data from 15 studies. Since matched neutralising antibody titres were not available, we used the vaccine regimen, time since vaccination and variant of concern to predict corresponding neutralising antibody titres. We then compared the observed vaccine effectiveness reported in these studies to the protection predicted by a previously published model of the relationship between neutralising antibody titre and vaccine effectiveness against severe COVID-19. We find that predicted neutralising antibody titres are strongly correlated with observed vaccine effectiveness against symptomatic (Spearman ρ = 0.95, p < 0.001) and severe (Spearman ρ = 0.72, p < 0.001 for both) COVID-19 and that the loss of neutralising antibodies over time and to new variants are strongly predictive of observed vaccine protection against severe COVID-19

    Monoclonal antibody levels and protection from COVID-19

    Full text link
    Multiple monoclonal antibodies have been shown to be effective for both prophylaxis and therapy for SARS-CoV-2 infection. Here we aggregate data from randomized controlled trials assessing the use of monoclonal antibodies (mAb) in preventing symptomatic SARS-CoV-2 infection. We use data on the in vivo concentration of mAb and the associated protection from COVID-19 over time to model the dose-response relationship of mAb for prophylaxis. We estimate that 50% protection from COVID-19 is achieved with a mAb concentration of 96-fold of the in vitro IC50 (95% CI: 32—285). This relationship provides a tool for predicting the prophylactic efficacy of new mAb and against SARS-CoV-2 variants. Finally, we compare the relationship between neutralization titer and protection from COVID-19 after either mAb treatment or vaccination. We find no significant difference between the 50% protective titer for mAb and vaccination, although sample sizes limited the power to detect a difference

    Determinants of passive antibody efficacy in SARS-CoV-2 infection: a systematic review and meta-analysis

    Full text link
    Background: Randomised controlled trials of passive antibodies as treatment and prophylaxis for COVID-19 have reported variable efficacy. However, the determinants of efficacy have not been identified. We aimed to assess how the dose and timing of administration affect treatment outcome. Methods: In this systematic review and meta-analysis, we extracted data from published studies of passive antibody treatment from Jan 1, 2019, to Jan 31, 2023, that were identified by searching multiple databases, including MEDLINE, PubMed, and ClinicalTrials.gov. We included only randomised controlled trials of passive antibody administration for the prevention or treatment of COVID-19. To compare administered antibody dose between different treatments, we used data on in-vitro neutralisation titres to normalise dose by antibody potency. We used mixed-effects regression and model fitting to analyse the relationship between timing, dose and efficacy. Findings: We found 58 randomised controlled trials that investigated passive antibody therapies for the treatment or prevention of COVID-19. Earlier clinical stage at treatment initiation was highly predictive of the efficacy of both monoclonal antibodies (p<0·0001) and convalescent plasma therapy (p=0·030) in preventing progression to subsequent stages, with either prophylaxis or treatment in outpatients showing the greatest effects. For the treatment of outpatients with COVID-19, we found a significant association between the dose administered and efficacy in preventing hospitalisation (relative risk 0·77; p<0·0001). Using this relationship, we predicted that no approved monoclonal antibody was expected to provide more than 30% efficacy against some omicron (B.1.1.529) subvariants, such as BQ.1.1. Interpretation: Early administration before hospitalisation and sufficient doses of passive antibody therapy are crucial to achieving high efficacy in preventing clinical progression. The relationship between dose and efficacy provides a framework for the rational assessment of future passive antibody prophylaxis and treatment strategies for COVID-19. Funding: The Australian Government Department of Health, Medical Research Future Fund, National Health and Medical Research Council, the University of New South Wales, Monash University, Haematology Society of Australia and New Zealand, Leukaemia Foundation, and the Victorian Government

    The PiGeOn project: Protocol for a longitudinal study examining psychosocial, behavioural and ethical issues and outcomes in cancer tumour genomic profiling

    Full text link
    © 2018 The Author(s). Background: Genomic sequencing in cancer (both tumour and germline), and development of therapies targeted to tumour genetic status, hold great promise for improvement of patient outcomes. However, the imminent introduction of genomics into clinical practice calls for better understanding of how patients value, experience, and cope with this novel technology and its often complex results. Here we describe a protocol for a novel mixed-methods, prospective study (PiGeOn) that aims to examine patients' psychosocial, cognitive, affective and behavioural responses to tumour genomic profiling and to integrate a parallel critical ethical analysis of returning results. Methods: This is a cohort sub-study of a parent tumour genomic profiling programme enrolling patients with advanced cancer. One thousand patients will be recruited for the parent study in Sydney, Australia from 2016 to 2019. They will be asked to complete surveys at baseline, three, and fivemonths. Primary outcomes are: knowledge, preferences, attitudes and values. A purposively sampled subset of patients will be asked to participate in three semi-structured interviews (at each time point) to provide deeper data interpretation. Relevant ethical themes will be critically analysed to iteratively develop or refine normative ethical concepts or frameworks currently used in the return of genetic information. Discussion: This will be the first Australian study to collect longitudinal data on cancer patients' experience of tumour genomic profiling. Findings will be used to inform ongoing ethical debates on issues such as how to effectively obtain informed consent for genomic profiling return results, distinguish between research and clinical practice and manage patient expectations. The combination of quantitative and qualitative methods will provide comprehensive and critical data on how patients cope with 'actionable' and 'non-actionable' results. This information is needed to ensure that when tumour genomic profiling becomes part of routine clinical care, ethical considerations are embedded, and patients are adequately prepared and supported during and after receiving results

    The PiGeOn project: Protocol of a longitudinal study examining psychosocial and ethical issues and outcomes in germline genomic sequencing for cancer

    Full text link
    © 2018 The Author(s). Background: Advances in genomics offer promise for earlier detection or prevention of cancer, by personalisation of medical care tailored to an individual's genomic risk status. However genome sequencing can generate an unprecedented volume of results for the patient to process with potential implications for their families and reproductive choices. This paper describes a protocol for a study (PiGeOn) that aims to explore how patients and their blood relatives experience germline genomic sequencing, to help guide the appropriate future implementation of genome sequencing into routine clinical practice. Methods: We have designed a mixed-methods, prospective, cohort sub-study of a germline genomic sequencing study that targets adults with cancer suggestive of a genetic aetiology. One thousand probands and 2000 of their blood relatives will undergo germline genomic sequencing as part of the parent study in Sydney, Australia between 2016 and 2020. Test results are expected within12-15 months of recruitment. For the PiGeOn sub-study, participants will be invited to complete surveys at baseline, three months and twelve months after baseline using self-administered questionnaires, to assess the experience of long waits for results (despite being informed that results may not be returned) and expectations of receiving them. Subsets of both probands and blood relatives will be purposively sampled and invited to participate in three semi-structured qualitative interviews (at baseline and each follow-up) to triangulate the data. Ethical themes identified in the data will be used to inform critical revisions of normative ethical concepts or frameworks. Discussion: This will be one of the first studies internationally to follow the psychosocial impact on probands and their blood relatives who undergo germline genome sequencing, over time. Study results will inform ongoing ethical debates on issues such as informed consent for genomic sequencing, and informing participants and their relatives of specific results. The study will also provide important outcome data concerning the psychological impact of prolonged waiting for germline genomic sequencing. These data are needed to ensure that when germline genomic sequencing is introduced into standard clinical settings, ethical concepts are embedded, and patients and their relatives are adequately prepared and supported during and after the testing process

    Psychosocial morbidity in TP53 mutation carriers: is whole-body cancer screening beneficial?

    Get PDF
    Germline TP53 mutation carriers are at high risk of developing a range of cancers. Effective cancer risk management is an important issue for these individuals. We assessed the psychosocial impact in TP53 mutation carriers of WB-MRI screening as part of the Surveillance in Multi-Organ Cancer (SMOC+) protocol, measuring their unmet needs, anxiety and depression levels as well as cancer worry using psychological questionnaires and in-depth interviews about their experiences of screening. We present preliminary psychosocial findings from 17 participants during their first 12 months on the trial. We found a significant reduction in participants' mean anxiety from baseline to two weeks post WB-MRI (1.2, 95% CI 0.17 to 2.23 p = 0.025), indicative of some benefit. Emerging qualitative themes show most participants are emotionally supported and contained by the screening program and are motivated by their immediate concern about staying alive, despite being informed about the current lack of evidence around efficacy of screening for people with TP53 mutations in terms of cancer morbidity or mortality. For those that do gain emotional reassurance from participating in the screening study, feelings of abandonment by the research team are a risk when the study ends. For others, screening was seen as a burden, consistent with the relentless nature of cancer risk associated with Li-Fraumeni syndrome, though these patients still declared they wished to participate due to their concern with staying alive. Families with TP53 mutations need ongoing support due to the impact on the whole family system. These findings suggest a comprehensive multi-organ screening program for people with TP53 mutations provides psychological benefit independent of an impact on cancer morbidity and mortality associated with the syndrome. The benefits of a multi-organ screening program will be greater still if the screening tests additionally reduce the cancer morbidity and mortality associated with the syndrome. These findings may also inform the care of individuals and families with other multi-organ cancer predisposition syndromes

    An exploration of ambigrammatic sequences in narnaviruses

    Get PDF
    Narnaviruses have been described as positive-sense RNA viruses with a remarkably simple genome of ~3 kb, encoding only a highly conserved RNA-dependent RNA polymerase (RdRp). Many narnaviruses, however, are 'ambigrammatic' and harbour an additional uninterrupted open reading frame (ORF) covering almost the entire length of the reverse complement strand. No function has been described for this ORF, yet the absence of stops is conserved across diverse narnaviruses, and in every case the codons in the reverse ORF and the RdRp are aligned. The >3 kb ORF overlap on opposite strands, unprecedented among RNA viruses, motivates an exploration of the constraints imposed or alleviated by the codon alignment. Here, we show that only when the codon frames are aligned can all stop codons be eliminated from the reverse strand by synonymous single-nucleotide substitutions in the RdRp gene, suggesting a mechanism for de novo gene creation within a strongly conserved amino-acid sequence. It will be fascinating to explore what implications this coding strategy has for other aspects of narnavirus biology. Beyond narnaviruses, our rapidly expanding catalogue of viral diversity may yet reveal additional examples of this broadly-extensible principle for ambigrammatic-sequence development

    Delayed Differentiation Makes Many Models Compatible with Data for CD8+ T Cell Differentiation

    Get PDF
    Upon antigen stimulation, naïve CD8+ T cells differentiate into short-lived effectors and longer-lived memory T cells. The kinetics of expansion of antigen-specific CD8+ T cells is highly reproducible at the population level, but the fate of individual naïve cells is stochastic, as individual naïve CD8+ T cells produce different numbers of effector and memory cells. Using mathematical models to analyse experimental data on tracing the fate of individual naïve T cells, it was previously shown that a linear model where naïve CD8+ T cells first differentiate into memory precursors that subsequently differentiate into effector cells describes the data best. However, this ‘memory first’ linear model assumed that the proliferation and differentiation events were distributed exponentially, whereas several studies indicate that differentiation of CD8+ T cell subsets need not follow an exponential distribution. Here we investigate the effect of delayed differentiation by adding intermediate compartments and use similar ordinary differential equations and Gillespie simulations to evaluate alternate models of CD8+ T cell differentiation. Models where a substantial fraction of the naïve CD8+ T cells directly differentiate into effector cells, without going through a memory phase, exhibit population dynamics that are very similar to the original ‘memory first’ linear model. Because alternate models with delayed differentiation perform better than those without a delay, we conclude that non-exponential forms of cellular differentiation need to be considered when comparing models. Hence the exact pathway for the differentiation of naïve CD8+ T cells into effector and memory T cells remains an open question
    corecore