53 research outputs found

    Testing two-step models of negative quantification using a novel machine learning analysis of EEG

    Get PDF
    The sentences “More than half of the students passed the exam” and “Fewer than half of the students failed the exam” describe the same set of situations, and yet the former results in shorter reaction times in verification tasks. The two-step model explains this result by postulating that negative quantifiers contain hidden negation, which involves an extra processing stage. To test this theory, we applied a novel EEG analysis technique focused on detecting cognitive stages (HsMM-MVPA) to data from a picture-sentence verification task. We estimated the number of processing stages during reading and verification of quantified sentences (e.g. “Fewer than half of the dots are blue”) that followed the presentation of pictures containing coloured geometric shapes. We did not find evidence for an extra step during the verification of sentences with fewer than half. We provide an alternative interpretation of our results in line with an expectation-based pragmatic account

    An iterative block-shifting approach to retention time alignment that preserves the shape and area of gas chromatography-mass spectrometry peaks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolomics, petroleum and biodiesel chemistry, biomarker discovery, and other fields which rely on high-resolution profiling of complex chemical mixtures generate datasets which contain millions of detector intensity readings, each uniquely addressed along dimensions of <it>time </it>(<it>e.g.</it>, <it>retention time </it>of chemicals on a chromatographic column), a <it>spectral value </it>(<it>e.g., mass-to-charge ratio </it>of ions derived from chemicals), and the <it>analytical run number</it>. They also must rely on data preprocessing techniques. In particular, inter-run variance in the retention time of chemical species poses a significant hurdle that must be cleared before feature extraction, data reduction, and knowledge discovery can ensue. <it>Alignment methods</it>, for calibrating retention reportedly (and in our experience) can misalign matching chemicals, falsely align distinct ones, be unduly sensitive to chosen values of input parameters, and result in distortions of peak shape and area.</p> <p>Results</p> <p>We present an iterative block-shifting approach for retention-time calibration that detects chromatographic features and qualifies them by retention time, spectrum, and the effect of their inclusion on the quality of alignment itself. Mass chromatograms are aligned pairwise to one selected as a reference. In tests using a 45-run GC-MS experiment, block-shifting reduced the absolute deviation of retention by greater than 30-fold. It compared favourably to COW and XCMS with respect to alignment, and was markedly superior in preservation of peak area.</p> <p>Conclusion</p> <p>Iterative block-shifting is an attractive method to align GC-MS mass chromatograms that is also generalizable to other two-dimensional techniques such as HPLC-MS.</p

    Archival influenza virus genomes from Europe reveal genomic variability during the 1918 pandemic

    Get PDF
    The 1918 influenza pandemic was the deadliest respiratory pandemic of the 20th century and determined the genomic make-up of subsequent human influenza A viruses (IAV). Here, we analyze both the first 1918 IAV genomes from Europe and the first from samples prior to the autumn peak. 1918 IAV genomic diversity is consistent with a combination of local transmission and long-distance dispersal events. Comparison of genomes before and during the pandemic peak shows variation at two sites in the nucleoprotein gene associated with resistance to host antiviral response, pointing at a possible adaptation of 1918 IAV to humans. Finally, local molecular clock modeling suggests a pure pandemic descent of seasonal H1N1 IAV as an alternative to the hypothesis of origination through an intrasubtype reassortment.Peer Reviewe

    Dendritic Core-Shell Macromolecules Soluble in Supercritical Carbon Dioxide

    Full text link
    International audienceSupercritical carbon dioxide has found strong interest as a reaction medium recently.1,2 As an alternative to organic solvents, compressed carbon dioxide is toxicologically harmless, nonflammable, inexpensive, and environmentally benign.3 Its accessible critical temperature and pressure (Tc ) 31 °C, Pc ) 7.38 MPa, Fc ) 0.468 g cm-3)4 and the possibility of tuning the solvent-specific properties between the ones of liquid and gas are very attractive

    Rapid Etiological Classification of Meningitis by NMR Spectroscopy Based on Metabolite Profiles and Host Response

    Get PDF
    Bacterial meningitis is an acute disease with high mortality that is reduced by early treatment. Identification of the causative microorganism by culture is sensitive but slow. Large volumes of cerebrospinal fluid (CSF) are required to maximise sensitivity and establish a provisional diagnosis. We have utilised nuclear magnetic resonance (NMR) spectroscopy to rapidly characterise the biochemical profile of CSF from normal rats and animals with pneumococcal or cryptococcal meningitis. Use of a miniaturised capillary NMR system overcame limitations caused by small CSF volumes and low metabolite concentrations. The analysis of the complex NMR spectroscopic data by a supervised statistical classification strategy included major, minor and unidentified metabolites. Reproducible spectral profiles were generated within less than three minutes, and revealed differences in the relative amounts of glucose, lactate, citrate, amino acid residues, acetate and polyols in the three groups. Contributions from microbial metabolism and inflammatory cells were evident. The computerised statistical classification strategy is based on both major metabolites and minor, partially unidentified metabolites. This data analysis proved highly specific for diagnosis (100% specificity in the final validation set), provided those with visible blood contamination were excluded from analysis; 6-8% of samples were classified as indeterminate. This proof of principle study suggests that a rapid etiologic diagnosis of meningitis is possible without prior culture. The method can be fully automated and avoids delays due to processing and selective identification of specific pathogens that are inherent in DNA-based techniques

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Testing two-step models of negative quantification using a novel machine learning analysis of EEG

    No full text
    The sentences “More than half of the students passed the exam” and “Fewer than half of the students failed the exam” describe the same set of situations, and yet the former results in shorter reaction times in verification tasks. The two-step model explains this result by postulating that negative quantifiers contain hidden negation, which involves an extra processing stage. To test this theory, we applied a novel EEG analysis technique focused on detecting cognitive stages (HsMM-MVPA) to data from a picture-sentence verification task. We estimated the number of processing stages during reading and verification of quantified sentences (e.g. “Fewer than half of the dots are blue”) that followed the presentation of pictures containing coloured geometric shapes. We did not find evidence for an extra step during the verification of sentences with fewer than half. We provide an alternative interpretation of our results in line with an expectation-based pragmatic account.</p
    corecore