89 research outputs found

    High load carrying structures made from folded composite materials

    Get PDF
    Large design and manufacturing effort for high load carrying composite structures results from anisotropic material behavior, tedious curing or forming conditions as well as high sensitivity to manufacturing defects. Such challenges limit the design freedom and result in large cost and time effort. A novel design approach is proposed to realize load carrying structures based on the utilization of the outstanding flexibility of thin composite shells and the “complexity for free” approach of additive manufacturing. To this purpose, highly integrated structures are created by folding cured and thin composite shells around additively manufactured internal core topologies. The developed structures do not require complex molding approaches, while maintaining a high degree of manufacturing quality. A multidisciplinary design optimization is used to fully exploit the design freedom and the load carrying capabilities of the structure. Following the design concept, a UAV wing structure that carries more than 100 times its own weight is developed, optimized and tested to validate the design approach and demonstrate load carrying ability and manufacturing quality

    Cure-induced deformation of ultra-thin composite laminates

    Get PDF
    In fiber reinforced composite materials, the manufacturing process induces residual stresses and distortions that decrease the mechanical performance of the structure and affect its geometry, especially in thin laminates. Multi-physics simulations were performed to assess the spring-in effect in ultra-thin composite parabolic solar reflectors. For this purpose, a resin kinetic model has been developed by means of differential scanning calorimetry experiments. The kinetic relation has been implemented into the finite element software in order to correctly predict the evolution of the composite degree of cure during the manufacturing process. Specimens were produced in an autoclave and their final geometries were measured by means of a non-contact measuring system and compared with numerical predictions, showing very good agreement

    Tailoring crystallinity for hemocompatible and durable PEEK cardiovascular implants

    Full text link
    Polymers have the potential to replace metallic or bioprosthetic heart valve components due to superior durability and inertness while allowing for native tissue-like flexibility. Despite these appealing properties, certain polymers such as polyetheretherketone (PEEK) have issues with hemocompatibility, which have previously been addressed through assorted complex processes. In this paper, we explore the enhancement of PEEK hemocompatibility with polymer crystallinity. Amorphous, semi-crystalline and crystalline PEEK are investigated in addition to a highly crystalline carbon fiber (CF)/PEEK composite material (CFPEEK). The functional group density of the PEEK samples is determined, showing that higher crystallinity results in increased amount of surface carbonyl functional groups. The increase of crystallinity (and negatively charged groups) appears to cause significant reductions in platelet adhesion (33 vs. 1.5 % surface coverage), hemolysis (1.55 vs. 0.75 %∙cm2^{-2}), and thrombin generation rate (4840 vs. 1585 mU/mL/min/cm2^{2}). In combination with the hemocompatibility study, mechanical characterization demonstrates that tailoring crystallinity is a simple and effective method to control both hemocompatibility and mechanical performance of PEEK. Furthermore, the results display that CFPEEK composite performed very well in all categories due to its enhanced crystallinity and complete carbon encapsulation, allowing the unique properties of CFPEEK to empower new concepts in cardiovascular device design

    Affinity capillary electrophoresis-mass spectrometry as a tool to unravel proteoform-specific antibody-receptor interactions

    Get PDF
    Monoclonal antibody (mAb) pharmaceuticals consist of a plethora of different proteoforms with different functional characteristics, including pharmacokinetics and pharmacodynamics, requiring their individual assessment. Current binding techniques do not distinguish between coexisting proteoforms requiring tedious production of enriched proteoforms. Here, we have developed an approach based on mobility shift-affinity capillary electrophoresis-mass spectrometry (ACE-MS), which permitted us to determine the binding of coexisting mAb proteoforms to Fc receptors (FcRs). For high-sensitivity MS analysis, we used a sheathless interface providing adequate mAb sensitivity allowing functional characterization of mAbs with a high sensitivity and dynamic range. As a model system, we focused on the interaction with the neonatal FcR (FcRn), which determines the half-life of mAbs. Depending on the oxidation status, proteoforms exhibited different electrophoretic mobility shifts in the presence of FcRn, which could be used to determine their affinity. We confirmed the decrease of the FcRn affinity with antibody oxidation and observed a minor glycosylation effect, with higher affinities for galactosylated glycoforms. Next to relative binding, the approach permits the determination of individual K-D values in solution resulting in values of 422 and 139 nM for double-oxidized and non-oxidized variants. Hyphenation with native MS provides unique capabilities for simultaneous heterogeneity assessment for mAbs, FcRn, and complexes formed. The latter provides information on binding stoichiometry revealing 1:1 and 1:2 for antibody/FcRn complexes. The use of differently engineered Fc-only constructs allowed distinguishing between symmetric and asymmetric binding. The approach opens up unique possibilities for proteoform-resolved antibody binding studies to FcRn and can be extended to other FcRs and protein interactions.Proteomic

    Fc gamma receptor IIIb binding of individual antibody proteoforms resolved by affinity chromatography-mass spectrometry

    Get PDF
    The crystallizable fragment (Fc) of immunoglobulin G (IgG) activates key immunological responses by interacting with Fc gamma receptors (Fc gamma R). Fc gamma RIIIb contributes to neutrophil activation and is involved in antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). These processes present important mechanisms-of-actions of therapeutic antibodies. The very low affinity of IgG toward Fc gamma RIIIb (K-D similar to 10 mu M) is a technical challenge for interaction studies. Additionally, the interaction is strongly dependent on IgG glycosylation, a major contributor to proteoform heterogeneity. We developed an affinity chromatography-mass spectrometry (AC-MS) assay for analyzing IgG-Fc gamma RIIIb interactions in a proteoform-resolved manner. This proved to be well suited to study low-affinity interactions. The applicability and selectivity of the method were demonstrated on a panel of nine different IgG monoclonal antibodies (mAbs), including no-affinity, low-affinity and high-affinity Fc-engineered or glycoengineered mAbs. Thereby, we could reproduce reported affinity rankings of different IgG glycosylation features and IgG subclasses. Additional post-translational modifications (IgG1 Met252 oxidation, IgG3 hinge-region O-glycosylation) showed no effect on Fc gamma RIIIb binding. Interestingly, we observed indications of an effect of the variable domain sequence on the Fc-binding that deserves further attention. Our new AC-MS method is a powerful tool for expanding knowledge on structure-function relationships of the IgG-Fc gamma RIIIb interaction. Hence, this assay may substantially improve the efficiency of assessing critical quality attributes of therapeutic mAbs with respect to an important aspect of neutrophil activation.Proteomic

    Identification of Potential Sites for Tryptophan Oxidation in Recombinant Antibodies Using tert-Butylhydroperoxide and Quantitative LC-MS

    Get PDF
    Amino acid oxidation is known to affect the structure, activity, and rate of degradation of proteins. Methionine oxidation is one of the several chemical degradation pathways for recombinant antibodies. In this study, we have identified for the first time a solvent accessible tryptophan residue (Trp-32) in the complementary-determining region (CDR) of a recombinant IgG1 antibody susceptible to oxidation under real-time storage and elevated temperature conditions. The degree of light chain Trp-32 oxidation was found to be higher than the oxidation level of the conserved heavy chain Met-429 and the heavy chain Met-107 of the recombinant IgG1 antibody HER2, which have already been identified as being solvent accessible and sensitive to chemical oxidation. In order to reduce the time for simultaneous identification and functional evaluation of potential methionine and tryptophan oxidation sites, a test system employing tert-butylhydroperoxide (TBHP) and quantitative LC-MS was developed. The optimized oxidizing conditions allowed us to specifically oxidize the solvent accessible methionine and tryptophan residues that displayed significant oxidation in the real-time stability and elevated temperature study. The achieved degree of tryptophan oxidation was adequate to identify the functional consequence of the tryptophan oxidation by binding studies. In summary, the here presented approach of employing TBHP as oxidizing reagent combined with quantitative LC-MS and binding studies greatly facilitates the efficient identification and functional evaluation of methionine and tryptophan oxidation sites in the CDR of recombinant antibodies

    Heat Resistance Mediated by a New Plasmid Encoded Clp ATPase, ClpK, as a Possible Novel Mechanism for Nosocomial Persistence of Klebsiella pneumoniae

    Get PDF
    Klebsiella pneumoniae is an important opportunistic pathogen and a frequent cause of nosocomial infections. We have characterized a K. pneumoniae strain responsible for a series of critical infections in an intensive care unit over a two-year period. The strain was found to be remarkably thermotolerant providing a conceivable explanation of its persistence in the hospital environment. This marked phenotype is mediated by a novel type of Clp ATPase, designated ClpK. The clpK gene is encoded by a conjugative plasmid and we find that the clpK gene alone renders an otherwise sensitive E. coli strain resistant to lethal heat shock. Furthermore, one third of a collection of nosocomial K. pneumoniae isolates carry clpK and exhibit a heat resistant phenotype. The discovery of ClpK as a plasmid encoded factor and its profound impact on thermal stress survival sheds new light on the biological relevance of Clp ATPases in acquired environmental fitness and highlights the challenges of mobile genetic elements in fighting nosocomial infections

    Human antibodies targeting Zika virus NS1 provide protection against disease in a mouse model.

    Get PDF
    Zika virus is a mosquito-borne flavivirus closely related to dengue virus that can cause severe disease in humans, including microcephaly in newborns and Guillain-Barré syndrome in adults. Specific treatments and vaccines for Zika virus are not currently available. Here, we isolate and characterize four monoclonal antibodies (mAbs) from an infected patient that target the non-structural protein NS1. We show that while these antibodies are non-neutralizing, NS1-specific mAbs can engage FcγR without inducing antibody dependent enhancement (ADE) of infection in vitro. Moreover, we demonstrate that mAb AA12 has protective efficacy against lethal challenges of African and Asian lineage strains of Zika virus in Stat2-/- mice. Protection is Fc-dependent, as a mutated antibody unable to activate known Fc effector functions or complement is not protective in vivo. This study highlights the importance of the ZIKV NS1 protein as a potential vaccine antigen
    corecore