118 research outputs found

    Design of robust total site heat recovery loops via Monte Carlo simulation

    Get PDF
    For increased total site heat integration, the optimal sizing and robust operation of a heat recovery loop (HRL) are prerequisites for economic efficiency. However, sizing based on one representative time series, not considering the variability of process streams due to their discontinuous operation, often leads to oversizing. The sensitive evaluation of the performance of an HRL by Monte Carlo (MC) simulation requires sufficient historical data and performance models. Stochastic time series are generated by distribution functions of measured data. With these inputs, one can then model and reliably assess the benefits of installing a new HRL. A key element of the HRL is a stratified heat storage tank. Validation tests of a stratified tank (ST) showed sufficient accuracy with acceptable simulation time for the variable layer height (VLH) multi-node (MN) modelling approach. The results of the MC simulation of the HRL system show only minor yield losses in terms of heat recovery rate (HRR) for smaller tanks. In this way, costs due to oversizing equipment can be reduced by better understanding the energy-capital trade-off

    Heat pump bridge analysis using the modified energy transfer diagram

    Get PDF
    Heat pumps are the key technology to decarbonise thermal processes by upgrading industrial surplus heat using renewable electricity. Existing insight-based integration methods refer to the idealised Grand Composite Curve requiring the full exploitation of heat recovery potential but leave the question of how to deal with technical or economic limitations unanswered. In this work, a novel Heat Pump Bridge Analysis (HPBA) is introduced for practically targeting technical and economic heat pump potential by applying Coefficient of Performance curves into the Modified Energy Transfer Diagram (METD). Removing cross-Pinch violations and operating heat exchangers at minimum approach temperatures by combined application of Bridge Analysis increases the heat recovery rate and reduce the temperature lift to be pumped at the same time. The insight-based METD allows the individual matching of heat surpluses and deficits of individual streams with the capabilities and performance of different market-available heat pump concepts. For an illustrative example, the presented modifications based on HPBA increase the economically viable share of the technical heat pump potential from 61% to 79%

    Edge magnetoplasmons in periodically modulated structures

    Full text link
    We present a microscopic treatment of edge magnetoplasmons (EMP's) within the random-phase approximation for strong magnetic fields, low temperatures, and filling factor Μ=1(2)\nu =1(2), when a weak short-period superlattice potential is imposed along the Hall bar. The modulation potential modifies both the spatial structure and the dispersion relation of the fundamental EMP and leads to the appearance of a novel gapless mode of the fundamental EMP. For sufficiently weak modulation strengths the phase velocity of this novel mode is almost the same as the group velocity of the edge states but it should be quite smaller for stronger modulation. We discuss in detail the spatial structure of the charge density of the renormalized and the novel fundamental EMP's.Comment: 8 pages, 4 figure

    The GALLEX Project

    Get PDF
    AbstractThe GALLEX collaboration aims at the detection of solar neutrinos in a radiochemical experiment employing 30 tons of Gallium in form of concentrated aqueous Gallium-chloride solution. The detector is primarily sensitive to the otherwise inaccessible pp-neutrinos. Details of the experiment have been repeatedly described before [1-7]. Here we report the present status of implementation in the Laboratori Nazionali del Gran Sasso (Italy). So far, 12.2 tons of Gallium are at hand. The present status of development allows to start the first full scale run at the time when 30 tons of Gallium become available. This date is expected to be January, 1990

    Search for excited leptons at 130-140 GeV

    Get PDF

    Search for supersymmetric particles in e+e−e^+e^- collisions at centre-of-mass energies of 130 and 136 GeV

    Get PDF

    Four-jet final state production in e+e−e^+e^- collisions at center-of-mass energies of 130 and 136 GeV

    Get PDF

    Search for supersymmetry in the photon(s) plus missing energy channels at s\sqrt{s}=161 GeV and 172 GeV

    No full text
    Searches for supersymmetric particles in channels with one or more photons and missing energy have been performed with data collected by the ALEPH detector at LEP. The data consist of 11.1 \pb\ at s=161  GeV\sqrt{s} = 161 ~\, \rm GeV, 1.1 \pb\ at 170 \gev\ and 9.5 \pb\ at 172 GeV. The \eenunu\ cross se ction is measured. The data are in good agreement with predictions based on the Standard Model, and are used to set upper limits on the cross sections for anomalous photon production. These limits are compared to two different SUSY models and used to set limits on the neutralino mass. A limit of 71 \gevsq\ at 95\% C.L. is set on the mass of the lightest neutralin o (τχ10≀\tau_{\chi_{1}^{0}} \leq 3 ns) for the gauge-mediated supersymmetry breaking and LNZ models
    • 

    corecore