129 research outputs found

    Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility

    Get PDF
    Germline mutations in the von Hippel–Lindau disease (VHL) and succinate dehydrogenase subunit B (SDHB) genes can cause inherited phaeochromocytoma and/or renal cell carcinoma(RCC). Dysregulation of the hypoxia-inducible factor (HIF) transcription factors has been linked to VHL and SDHB-related RCC; both HIF dysregulation and disordered function of a prolyl hydroxylase domain isoform 3 (PHD3/EGLN3)-related pathway of neuronal apoptosis have been linked to the development of phaeochromocytoma. The 2-oxoglutarate-dependent prolyl hydroxylase enzymes PHD1 (EGLN2), PHD2 (EGLN1) and PHD3 (EGLN3) have a key role in regulating the stability of HIF-a subunits (and hence expression of the HIF-a transcription factors). A germline PHD2 mutation has been reported in association with congenital erythrocytosis and recurrent extra-adrenal phaeochromocytoma. We undertook mutation analysis of PHD1, PHD2 and PHD3 in two cohorts of patients with features of inherited phaeochromocytoma (nZ82) and inherited RCC (nZ64) and no evidence of germline mutations in known susceptibility genes. No confirmed pathogenic mutations were detected suggesting that mutations in these genes are not a frequent cause of inherited phaeochromocytoma or RCC

    Overview over the neutral gas pressures in Wendelstein 7-X during divertor operation under boronized wall conditions

    Get PDF
    During the first test divertor campaign of the stellarator experiment Wendelstein 7-X (Pedersen et al 2022 Nucl. Fusion 62 042022), OP1.2b, 13 neutral gas pressure gauges collected data in different locations in the plasma vessel, enabling a detailed analysis of the neutral gas pressures, the compression ratios and the particle exhaust rates via the turbomolecular pumps in the different magnetic field configurations. In Wendelstein 7-X, the edge magnetic islands are intersected by the divertor target plates and used to create a plasma-wall interface. As the number and position of the magnetic islands varies in different magnetic field configurations, the position of the strike line on the target plates and thus the neutral gas pressure in the subdivertor differs between the configurations. Neutral gas pressures on the order of few 10βˆ’4 mbar were measured in the subdivertor region. The highest neutral gas pressure of 1.75Γ—10βˆ’31.75\times 10^{-3} mbar was obtained in the so-called high iota configuration featuring four edge magnetic islands per cross section. The neutral particle flux through the pumping gaps into the subdivertor volume was provided by EMC3-EIRENE simulations and allowed to analyze the relation between the particle flux entering the subdivertor and the pressure distribution in the subdivertor. Finite element simulations in ANSYS provide a detailed picture of the pressure distribution in the subdivertor volume and agree with the neutral gas pressure measurements in the subdivertor in the standard configuration featuring an island chain of 5 edge magnetic islands. Surprisingly high neutral gas pressures that were not predicted by the simulation were measured in the subdivertor region away from the main strike line for discharges in the most used magnetic configuration, the standard configuration. While the pressure ratio between the two sections of the subdivertor volume, the low and high iota section is 0.06 in high iota configuration, a ratio of 2–5 was obtained in the other configurations, indicating significant particle loads and exhaust rates on the high iota section of the subdivertor in magnetic configurations with the main strike line on the low iota divertor targets

    Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors

    Get PDF
    Childhood neuroblastoma has a remarkable variability in outcome. Age at diagnosis is one of the most important prognostic factors, with children less than 1 year old having favorable outcomes. Here we study single-cell and single-nuclei transcriptomes of neuroblastoma with different clinical risk groups and stages, including healthy adrenal gland. We compare tumor cell populations with embryonic mouse sympatho-adrenal derivatives, and post-natal human adrenal gland. We provide evidence that low and high-risk neuroblastoma have different cell identities, representing two disease entities. Low-risk neuroblastoma presents a tran- scriptome that resembles sympatho- and chromaffin cells, whereas malignant cells enriched in high-risk neuroblastoma resembles a subtype of TRKB+cholinergic progenitor population identified in human post-natal gland. Analyses of these populations reveal different gene expression programs for worst and better survival in correlation with age at diagnosis. Our findings reveal two cellular identities and a composition of human neuroblastoma tumors reflecting clinical heterogeneity and outcome

    EMC3-EIRENE simulation of first wall recycling fluxes in W7-X with relation to H-alpha measurements

    Get PDF
    In the Wendelstein 7-X stellarator, the main locations of particle sources are expected to be the carbon divertors, baffles and graphite heat shield first wall. In this paper, the heat shield is implemented in EMC3-EIRENE to understand the expected areas and magnitudes of the recycling flux to this component. It is found that in the simulation the heat shield is not a significant source of recycling neutrals. The areas of simulated recycling flux are shown to correlate well with footprints of plasma-wetting seen in post-experimental campaign in-vessel inspection photos. EMC3-EIRENE reconstruction of line-integrated H-alpha measurements at the heat shield indicate that the majority of emission does not come from local recycling neutrals. Rather, the H-alpha signals at the heat shield are dominated by ionization of neutrals which have leaked from the divertor/baffle region into the midplane. The magnitude of the H-alpha line emission from the synthetic reconstruction is consistent with the experiment, indicating that a large overestimation of heat shield recycling would occur if these measurements were assumed to be from local recycling sources. In the future, it may be possible to obtain some information of local recycling from the heat shield since it was found that the majority of the recycling flux occurs on two well-localized areas

    Inborn and acquired metabolic defects in cancer

    Get PDF
    The observation that altered metabolism is the fundamental cause of cancer was made by Otto Warburg nearly a century ago. However, the subsequent identification of oncogenes and tumor suppressor genes has displaced Warburg's theory pointing towards genetic aberrations as the underlining cause of cancer. Nevertheless, in the last decade, cancer-associated mutations have been identified in genes coding for tricarboxylic acid cycle (TCA cycle, also known as Krebs cycle) and closely related enzymes that have essential roles in cellular metabolism. These observations have revived interest in Warburg's hypothesis and prompted a flurry of functional studies in the hope of gaining mechanistic insight into the links between mitochondrial dysfunction, metabolic alterations, and cancer. In this review, we discuss the potential pro-oncogenic signaling role of some TCA cycle metabolites and their derivatives (oncometabolites). In particular, we focus on their effects on dioxygenases, a family of oxygen and Ξ±-ketoglutarate-dependent enzymes that control, among other things, the levels and activity of the hypoxia-inducible transcription factors and the activity of DNA and histone demethylases

    Increased Expression of PcG Protein YY1 Negatively Regulates B Cell Development while Allowing Accumulation of Myeloid Cells and LT-HSC Cells

    Get PDF
    Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFΞΊB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs
    • …
    corecore