1,149 research outputs found

    Experiencing Bullying between Genders: A Quantitative Study done at UNH

    Get PDF
    Many studies have focused on the issue of bullying; however, few have specifically done research on the experience of bullying in a college setting between genders. This study was conducted at the University of New Hampshire (UNH) where 312 undergraduates enrolled in sociology classes were surveyed. There were significant results that supported that almost half of UNH undergraduate females who reported experienced bullying also reported they have experienced being emotionally bullied by other females. UNH undergraduate males also reported a significant incidence of physical bullying perpetrated by others males. Further research, including a more representative sample would improve findings

    Quantum Period Finding is Compression Robust

    Full text link
    We study quantum period finding algorithms such as Simon and Shor (and its variants Eker{\aa}-H{\aa}stad and Mosca-Ekert). For a periodic function ff these algorithms produce -- via some quantum embedding of ff -- a quantum superposition xxf(x)\sum_x |x\rangle|f(x)\rangle, which requires a certain amount of output qubits that represent f(x)|f(x)\rangle. We show that one can lower this amount to a single output qubit by hashing ff down to a single bit in an oracle setting. Namely, we replace the embedding of ff in quantum period finding circuits by oracle access to several embeddings of hashed versions of ff. We show that on expectation this modification only doubles the required amount of quantum measurements, while significantly reducing the total number of qubits. For example, for Simon's algorithm that finds periods in f:F2nF2nf: \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n our hashing technique reduces the required output qubits from nn down to 11, and therefore the total amount of qubits from 2n2n to n+1n+1. We also show that Simon's algorithm admits real world applications with only n+1n+1 qubits by giving a concrete realization of a hashed version of the cryptographic Even-Mansour construction. Moreover, for a variant of Simon's algorithm on Even-Mansour that requires only classical queries to Even-Mansour we save a factor of (roughly) 44 in the qubits. Our oracle-based hashed version of the Eker{\aa}-H{\aa}stad algorithm for factoring nn-bit RSA reduces the required qubits from (32+o(1))n(\frac 3 2 + o(1))n down to (12+o(1))n(\frac 1 2 + o(1))n. We also show a real-world (non-oracle) application in the discrete logarithm setting by giving a concrete realization of a hashed version of Mosca-Ekert for the Decisional Diffie Hellman problem in Fpm\mathbb{F}_{p^m}, thereby reducing the number of qubits by even a linear factor from mlogpm \log p downto logp\log p

    Applications of fourier analysis to intersection bodies

    Get PDF
    The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.Title from title screen of research.pdf file (viewed on June 16, 2009)Vita.Includes bibliographical references.Thesis (Ph. D.) University of Missouri-Columbia 2008.Dissertations, Academic -- University of Missouri--Columbia -- Mathematics.The concept of an intersection body is central for the dual Brunn-Minkowski theory and has played an important role in the solution of the Busemann-Petty problem. A more general concept of [kappa]-intersection bodies is related to the generalization of the Busemann-Petty problem. We are interested in comparing classes of [kappa]-intersection bodies. In the first chapter we present the result that was published in J. Schlieper, A note on [kappa]-intersection bodies, Proceedings American. Mathematical Society,135 (2007), 2081-2088. The result examines the conjecture that the classes of [kappa]-intersection bodies increase with [kappa]. In particular, the result constructs a 4- intersection body that is not a 2-intersection body. The second chapter is concerned with the geometry of spaces of Lorentz type. We define a 1-homogeneous functional based on Lorentz type norms. Consider the family of norms [nearest integer function]x[nearest integer function][pi][alpha] = [alpha]i₁xq₁+ [alpha]inxqn₁/q where [alpha] = ([alpha]₁, . . . , [alpha]n) with [alpha]₁ [pi], . . . ,[pi] [alpha] [less than]0 and [pi]([alpha]) is [alpha] permutation of the vector [alpha]. Define a 1-homogeneous functional based on this family of norms as follows ... We examine the geometric properties of the space (Rn, [kappa].[kappa]k). First, we determine the conditions when the star body (Rn, [kappa].[kappa]) is a [kappa]-intersection body. Second, we find the extremal sections of the star body (Rn, [kappa].[kappa]). Throughout this work we use the Fourier Analytic methods that were recently developed

    Fostering energy awareness in residential homes using mobile devices

    Get PDF
    There is considerable global effort being made towards identifying ways of reducing energy consumption to cope with growing demands. Although there is potential for energy saving in many sectors, our focus is on reducing energy consumption in residential homes. We have developed a system which combines home automation and energy usage monitoring technologies. The system offers a range of tools designed for mobile devices to assist users with monitoring their energy usage and provides mechanisms for setting up and controlling home appliances to conserve energy. In this paper we describe our system and a user study we have conducted to evaluate its effectiveness. The findings of the study show the potential benefits of this type of mobile technology

    USEM: A ubiquitous smart energy management system for residential homes

    Get PDF
    With the ever-increasing worldwide demand for energy, and the limited available energy resources, there is a growing need to reduce our energy consumption whenever possible. Therefore, over the past few decades a range of technologies have been proposed to assist consumers with reducing their energy use. Most of these have focused on decreasing energy consumption in the industry, transport, and services sectors. In more recent years, however, growing attention has been given to energy use in the residential sector, which accounts for nearly 30% of total energy consumption in the developed countries. Here we present one such system, which aims to assist residential users with monitoring their energy usage and provides mechanisms for setting up and controlling their home appliances to conserve energy. We also describe a user study we have conducted to evaluate the effectiveness of this system in supporting its users with a range of tools and visualizations developed for ubiquitous devices such as mobile phones and tablets. The findings of this study have shown the potential benefits of our system, and have identified areas of improvement that need to be addressed in the future

    Armstrong Calculus

    Get PDF
    Authors\u27 Description: An open-source textbook for calculus. The text is mostly an adaptation of two other excellent open- source calculus textbooks: Active Calculus by Dr. Matt Boelkins of Grand Valley State University and Drs. Gregory Hartman, Brian Heinold, Troy Siemers, Dimplekumar Chalishajar, and Jennifer Bowen of the Virginia Military Institute and Mount Saint Mary\u27s University. Both of these texts can be found at http://aimath.org/textbooks/approved-textbooks/. The authors of this text have combined sections, examples, and exercises from the above two texts along with some of their own content to generate this text. The impetus for the creation of this text was to adopt an open-source textbook for Calculus while maintaining the typical schedule and content of the calculus sequence at our home institution. Accessible files with optical character recognition (OCR) and auto-tagging provided by the Center for Inclusive Design and Innovation.https://oer.galileo.usg.edu/mathematics-textbooks/1000/thumbnail.jp

    Assisting Inhabitants of Residential Homes with Management of Their Energy Consumption

    Get PDF
    Although there are already a range of energy monitoring and automation systems available in the market that target residential homes, mostly with the aim of reducing their total energy consumption, very few of these systems are directly concerned with how those energy savings are actually made. As such, these systems do not provide tools that would allow users to make intelligent decisions about their energy usage strategies, and encourage them to change their energy use behaviour. In this paper we describe a system designed to facilitate planning and control of energy usage activities in residential homes. We also report on a user study of this system which demonstrates its potential for making energy savings possible
    corecore