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Preface

A free and open-source calculus

First and foremost, this text is mostly an adaptation of two very
excellent open-source textbooks: Active Calculus by Dr. Matt
Boelkins and APEX Calculus by Drs. Gregory Hartman, Brian
Heinold, Troy Siemers, Dimplekumar Chalishajar, and Jennifer
Bowen. Both texts can be found at

http://aimath.org/textbooks/approved-textbooks/.

Dr. Boelkins also has a great blog for open source calculus at

https://opencalculus.wordpress.com/.

The authors of this text have combined sections, examples, and
exercises from the above two texts along with some of their own
content to generate this text. The impetus for the creation of this
text was to adopt an open-source textbook for Calculus while
maintaining the typical schedule and content of the calculus se-
quence at our home institution.

Several fundamental ideas in calculus are more than 2000

years old. As a formal subdiscipline of mathematics, calculus
was first introduced and developed in the late 1600s, with key
independent contributions from Sir Isaac Newton and Gottfried
Wilhelm Leibniz. Mathematicians agree that the subject has
been understood rigorously since the work of Augustin Louis
Cauchy and Karl Weierstrass in the mid 1800s when the field
of modern analysis was developed, in part to make sense of
the infinitely small quantities on which calculus rests. Hence,
as a body of knowledge calculus has been completely under-
stood by experts for at least 150 years. The discipline is one of
our great human intellectual achievements: among many spec-
tacular ideas, calculus models how objects fall under the forces
of gravity and wind resistance, explains how to compute areas
and volumes of interesting shapes, enables us to work rigor-
ously with infinitely small and infinitely large quantities, and
connects the varying rates at which quantities change to the to-
tal change in the quantities themselves.

http://aimath.org/textbooks/approved-textbooks/
https://opencalculus.wordpress.com/
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While each author of a calculus textbook certainly offers her
own creative perspective on the subject, it is hardly the case that
many of the ideas she presents are new. Indeed, the mathemat-
ics community broadly agrees on what the main ideas of calcu-
lus are, as well as their justification and their importance; the
core parts of nearly all calculus textbooks are very similar. As
such, it is our opinion that in the 21st century – an age where
the internet permits seamless and immediate transmission of
information – no one should be required to purchase a calculus
text to read, to use for a class, or to find a coherent collection
of problems to solve. Calculus belongs to humankind, not any
individual author or publishing company. Thus, the main pur-
pose of this work is to present a new calculus text that is free. In
addition, instructors who are looking for a calculus text should
have the opportunity to download the source files and make
modifications that they see fit; thus this text is open-source.

Because the text is free and open-source, any professor or
student may use and/or change the electronic version of the
text for no charge. Presently, a .pdf copy of the text and its
source files may be obtained by download from Github (insert
link here!!) This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 Unported License.
The graphic

that appears throughout the text shows that the work is licensed
with the Creative Commons, that the work may be used for free
by any party so long as attribution is given to the author(s), that
the work and its derivatives are used in the spirit of “share and
share alike,” and that no party may sell this work or any of its
derivatives for profit, with the following exception: it is entirely
acceptable for university bookstores to sell bound photocopied copies to
students at their standard markup above the copying expense. Full
details may be found by visiting

http://creativecommons.org/licenses/by-nc-sa/4.0/

or sending a letter to Creative Commons, 444 Castro Street, Suite
900, Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Chapter 6

Applications of Integration

6.1 Using Definite Integrals to Find Volume

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How can we use a definite integral to find the volume of a three-dimensional solid of revolution that
results from revolving a two-dimensional region about a particular axis?

• In what circumstances do we integrate with respect to y instead of integrating with respect to x?

• What adjustments do we need to make if we revolve about a line other than the x- or y-axis?

Introduction

3
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△x

x

y

Figure 6.1: A right circular cylinder.

Just as we can use definite integrals to add up the areas of rect-
angular slices to find the exact area that lies between two curves,
we can also employ integrals to determine the volume of certain
regions that have cross-sections of a particular consistent shape.
As a very elementary example, consider a cylinder of radius 2
and height 3, as pictured in Figure 6.19. While we know that
we can compute the area of any circular cylinder by the for-
mula V = πr2h, if we think about slicing the cylinder into thin
pieces, we see that each is a cylinder of radius r = 2 and height
(thickness) 4x. Hence, the volume of a representative slice is

Vslice = π · 22 · 4x.

Letting4x → 0 and using a definite integral to add the volumes
of the slices, we find that

V =
∫ 3

0
π · 22 dx.

Moreover, since
∫ 3

0
4π dx = 12π, we have found that the vol-

ume of the cylinder is 4π. The principal problem of interest in
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our upcoming work will be to find the volume of certain solids
whose cross-sections are all thin cylinders (or washers) and to
do so by using a definite integral. To that end, we first consider
another familiar shape in Preview Activity 6.1: a circular cone.

5

3

△x

x

y

y = f(x)

Figure 6.2: The circular cone described in Preview
Activity 6.1

Preview Activity 6.1

Consider a circular cone of radius 3 and height 5, which we view hor-
izontally as pictured in Figure 6.2. Our goal in this activity is to use a
definite integral to determine the volume of the cone.

(a) Find a formula for the linear function y = f (x) that is pictured in
Figure 6.2.

(b) For the representative slice of thickness 4x that is located horizon-
tally at a location x (somewhere between x = 0 and x = 5), what is
the radius of the representative slice? Note that the radius depends
on the value of x.

(c) What is the volume of the representative slice you found in (b)?

(d) What definite integral will sum the volumes of the thin slices across
the full horizontal span of the cone? What is the exact value of this
definite integral?

(e) Compare the result of your work in (d) to the volume of the cone
that comes from using the formula Vcone = 1

3 πr2h.

The Volume of a Solid of Revolution

A solid of revolution is a three dimensional solid that can be
generated by revolving one or more curves around a fixed axis.
For example, we can think of a circular cylinder as a solid of rev-
olution: in Figure 6.19, this could be accomplished by revolving
the line segment from (0, 2) to (3, 2) about the x-axis. Likewise,
the circular cone in Figure 6.2 is the solid of revolution gener-
ated by revolving the portion of the line y = 3− 3

5 x from x = 0
to x = 5 about the x-axis. It is particularly important to notice
in any solid of revolution that if we slice the solid perpendicular
to the axis of revolution, the resulting cross-section is circular.

We consider two examples to highlight some of the natural
issues that arise in determining the volume of a solid of revolu-
tion.

Example 1

Find the volume of the solid of revolution generated when the region R
bounded by y = 4− x2 and the x-axis is revolved about the x-axis.

Solution. First, we observe that y = 4− x2 intersects the x-axis at the
points (−2, 0) and (2, 0). When we take the region R that lies between
the curve and the x-axis on this interval and revolve it about the x-axis,
we get the three-dimensional solid pictured in Figure 6.3.
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Taking a representative slice of the solid located at a value x that lies
between x = −2 and x = 2, we see that the thickness of such a slice is
4x (which is also the height of the cylinder-shaped slice), and that the
radius of the slice is determined by the curve y = 4− x2. Hence, we find
that

Vslice = π(4− x2)24x,

since the volume of a cylinder of radius r and height h is V = πr2h.
Using a definite integral to sum the volumes of the representative

slices, it follows that

V =
∫ 2

−2
π(4− x2)2 dx.

It is straightforward to evaluate the integral and find that the volume is
V = 512

15 π.

2

4

△x

x

y
y = 4− x2

Figure 6.3: The solid of revolution in Example 1.

For a solid such as the one in Example 1, where each cross-
section is a cylindrical disk, we first find the volume of a typical
cross-section (noting particularly how this volume depends on
x), and then we integrate over the range of x-values through
which we slice the solid in order to find the exact total volume.
Often, we will be content with simply finding the integral that
represents the sought volume; if we desire a numeric value for
the integral, we typically use a calculator or computer algebra
system to find that value.

The general principle we are using to find the volume of a
solid of revolution generated by a single curve is often called
the disk method.

Disk Method

If y = r(x) is a nonnegative continuous function on [a, b],
then the volume of the solid of revolution generated by re-
volving the curve about the x-axis over this interval is given
by

V =
∫ b

a
π [r(x)]2 dx.

Example 2

Find the volume of the solid formed by revolving the curve y = 1/x,
from x = 1 to x = 2, about the y-axis.

Solution. Since the axis of rotation is vertical, we need to convert the
function into a function of y and convert the x-bounds to y-bounds. Since
y = 1/x defines the curve, we rewrite it as x = 1/y. The bound x = 1
corresponds to the y-bound y = 1, and the bound x = 2 corresponds to
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the y-bound y = 1/2.
Thus we are rotating the curve x = 1/y, from y = 1/2 to y = 1 about

the y-axis to form a solid. The curve and sample differential element are
sketched in Figure 6.4-(a), with a full sketch of the solid in Figure 6.4-(b).

We integrate to find the volume:

V = π
∫ 1

1/2

1
y2 dy

= −π

y

∣∣∣
1

1/2

= π units3.

...

..

x = 1/y

.

R(y) = 1/y

.
−2

.

2

.

x

.

y

(a)

...

..

−2

.

2
.

x

.

y

(b)

Figure 6.4: Sketching the solid in Example 2.

A different type of solid can emerge when two curves are
involved, as we see in the following example.

2

△x

4 y

r(x)

R(x)

Figure 6.5: At left, the solid of revolution in Exam-
ple 3. At right, a typical slice with inner radius r(x)
and outer radius R(x).

Example 3

Find the volume of the solid of revolution generated when the finite
region R that lies between y = 4− x2 and y = x + 2 is revolved about the
x-axis.

Solution. First, we must determine where the curves y = 4− x2 and
y = x + 2 intersect. Substituting the expression for y from the second
equation into the first equation, we find that x + 2 = 4− x2. Rearranging,
it follows that

x2 + x− 2 = 0,

and the solutions to this equation are x = −2 and x = 1. The curves
therefore cross at (−2, 0) and (1, 1).

When we take the region R that lies between the curves and revolve
it about the x-axis, we get the three-dimensional solid pictured at left in
Figure 6.5.

Immediately we see a major difference between the solid in this ex-
ample and the one in Example 2: here, the three-dimensional solid of
revolution isn’t “solid” in the sense that it has open space in its center.
If we slice the solid perpendicular to the axis of revolution, we observe
that in this setting the resulting representative slice is not a solid disk,
but rather a washer, as pictured at right in Figure 6.5. Moreover, at a
given location x between x = −2 and x = 1, the small radius r(x) of
the inner circle is determined by the curve y = x + 2, so r(x) = x + 2.
Similarly, the big radius R(x) comes from the function y = 4− x2, and
thus R(x) = 4− x2.

Thus, to find the volume of a representative slice, we compute the
volume of the outer disk and subtract the volume of the inner disk. Since

πR(x)24x− πr(x)24x = π[R(x)2 − r(x)2]4x,

it follows that the volume of a typical slice is

Vslice = π[(4− x2)2 − (x + 2)2]4x.

Hence, using a definite integral to sum the volumes of the respective
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slices across the integral, we find that

V =
∫ 1

−2
π[(4− x2)2 − (x + 2)2] dx.

Evaluating the integral, the volume of the solid of revolution is V =
108

5
π.

The general principle we are using to find the volume of a
solid of revolution generated by a single curve is often called
the washer method.

Washer Method

If y = R(x) and y = r(x) are nonnegative continuous func-
tions on [a, b] that satisfy R(x) ≥ r(x) for all x in [a, b], then
the volume of the solid of revolution generated by revolving
the region between them about the x-axis over this interval
is given by

V =
∫ b

a
π[R(x)2 − r(x)2] dx.

Activity 6.1–1

In each of the following questions, draw a careful, labeled sketch of the
region described, as well as the resulting solid that results from revolving
the region about the stated axis. In addition, draw a representative slice
and state the volume of that slice, along with a definite integral whose
value is the volume of the entire solid.

(a) The region S bounded by the x-axis, the curve y =
√

x, and the line
x = 4; revolve S about the x-axis.

(b) The region S bounded by the x-axis, the curve y =
√

x, and the line
y = 2; revolve S about the x-axis.

(c) The finite region S in the first quadrant bounded by the curves y =√
x and y = x3; revolve S about the x-axis.

(d) The finite region S bounded by the curves y = 2x2 + 1 and y =

x2 + 4; revolve S about the x-axis.

(e) The region S bounded by the y-axis, the curve y =
√

x, and the line
y = 2; revolve S about the y-axis. How does the problem change
considerably when we revolve about the y-axis?

Revolving about the y-axis

As seen in Activity 6.1–1, problem (e), the problem changes con-
siderably when we revolve a given region about the y-axis. Fore-
most, this is due to the fact that representative slices now have
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thickness 4y, which means that it becomes necessary to inte-
grate with respect to y. Let’s consider a particular example to
demonstrate some of the key issues.

Example 4

Find the volume of the solid of revolution generated when the finite
region R that lies between y =

√
x and y = x4 is revolved about the

y-axis.

Solution. We observe that these two curves intersect when x = 1,
hence at the point (1, 1). When we take the region R that lies between
the curves and revolve it about the y-axis, we get the three-dimensional
solid pictured at left in Figure 6.6.

Now, it is particularly important to note that the thickness of a rep-
resentative slice is 4y, and that the slices are only cylindrical washers in
nature when taken perpendicular to the y-axis. Hence, we envision slic-
ing the solid horizontally, starting at y = 0 and proceeding up to y = 1.
Because the inner radius is governed by the curve y =

√
x, but from the

perspective that x is a function of y, we solve for x and get x = y2 = r(y).
In the same way, we need to view the curve y = x4 (which governs the
outer radius) in the form where x is a function of y, and hence x = 4

√
y.

Therefore, we see that the volume of a typical slice is

Vslice = π[R(y)2 − r(y)2] = π[ 4
√

y2 − (y2)2]4y.

Using a definite integral to sum the volume of all the representative slices
from y = 0 to y = 1, the total volume is

V =
∫ y=1

y=0
π
[

4
√

y2 − (y2)2
]

dy.

It is straightforward to evaluate the integral and find that V =
7
15

π.

1

1

△y

x =
√

r(y)

R(y)

Figure 6.6: At left, the solid of revolution in Exam-
ple 4. At right, a typical slice with inner radius r(y)
and outer radius R(y).

Activity 6.1–2

In each of the following questions, draw a careful, labeled sketch of the
region described, as well as the resulting solid that results from revolving
the region about the stated axis. In addition, draw a representative slice
and state the volume of that slice, along with a definite integral whose
value is the volume of the entire solid.

(a) The region S bounded by the y-axis, the curve y =
√

x, and the line
y = 2; revolve S about the y-axis.

(b) The region S bounded by the x-axis, the curve y =
√

x, and the line
x = 4; revolve S about the y-axis.

(c) The finite region S in the first quadrant bounded by the curves y =

2x and y = x3; revolve S about the x-axis.

(d) The finite region S in the first quadrant bounded by the curves y =

2x and y = x3; revolve S about the y-axis.

(e) The finite region S bounded by the curves x = (y − 1)2 and y =
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x− 1; revolve S about the y-axis

Revolving about horizontal and vertical lines other than
the coordinate axes

Just as we can revolve about one of the coordinate axes (y = 0
or x = 0), it is also possible to revolve around any horizontal or
vertical line. Doing so essentially adjusts the radii of cylinders
or washers involved by a constant value. A careful, well-labeled
plot of the solid of revolution will usually reveal how the dif-
ferent axis of revolution affects the definite integral we set up.
Again, an example is instructive.

Example 5

Find the volume of the solid of revolution generated when the finite
region S that lies between y = x2 and y = x is revolved about the line
y = −1.

Solution. Graphing the region between the two curves in the first
quadrant between their points of intersection ((0, 0) and (1, 1)) and then
revolving the region about the line y = −1, we see the solid shown in
Figure 6.7. Each slice of the solid perpendicular to the axis of revolution
is a washer, and the radii of each washer are governed by the curves
y = x2 and y = x. But we also see that there is one added change: the
axis of revolution adds a fixed length to each radius. In particular, the
inner radius of a typical slice, r(x), is given by r(x) = x2 + 1, while the
outer radius is R(x) = x + 1. Therefore, the volume of a typical slice is

Vslice = π[R(x)2 − r(x)2]4x = π
[
(x + 1)2 − (x2 + 1)2

]
4x.

Finally, we integrate to find the total volume, and

V =
∫ 1

0
π
[
(x + 1)2 − (x2 + 1)2

]
dx =

7
15

π.

1

-2

1

r(x) R(x)

Figure 6.7: The solid of revolution described in Ex-
ample 5.

Activity 6.1–3

In each of the following questions, draw a careful, labeled sketch of the
region described, as well as the resulting solid that results from revolving
the region about the stated axis. In addition, draw a representative slice
and state the volume of that slice, along with a definite integral whose
value is the volume of the entire solid. For each prompt, use the finite
region S in the first quadrant bounded by the curves y = 2x and y = x3.

(a) Revolve S about the line y = −2.

(b) Revolve S about the line y = 4.

(c) Revolve S about the line x = −1.

(d) Revolve S about the line x = 5.
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Volumes of Other Solids

Given an arbitrary solid, we can approximate its volume by cut-
ting it into n thin slices. When the slices are thin, each slice
can be approximated well by a general right cylinder. Thus the
volume of each slice is approximately its cross-sectional area ×
thickness. (These slices are the differential elements.)

By orienting a solid along the x-axis, we can let A(xi) repre-
sent the cross-sectional area of the i th slice, and let ∆xi represent
the thickness of this slice (the thickness is a small change in x).
The total volume of the solid is approximately:

Volume ≈
n

∑
i=1

[
Area × thickness

]

=
n

∑
i=1

A(xi)∆xi.

Recognize that this is a Riemann Sum. By taking a limit (as
the thickness of the slices goes to 0) we can find the volume
exactly.

Volume By Cross-Sectional Area

The volume V of a solid, oriented along the x-axis with
cross-sectional area A(x) from x = a to x = b, is

V =
∫ b

a
A(x) dx.

...

.. 5.

10

.

10

.2x.

2x

. x

.

x

.

y

Figure 6.8: Orienting a pyramid along the x-axis in
Example 6.

Example 6

Find the volume of a pyramid with a square base of side length 10 in and
a height of 5 in.

Solution. There are many ways to “orient” the pyramid along the x-
axis; Figure 6.8 gives one such way, with the pointed top of the pyramid
at the origin and the x-axis going through the center of the base.

Each cross section of the pyramid is a square; this is a sample dif-
ferential element. To determine its area A(x), we need to determine the
side lengths of the square.

When x = 5, the square has side length 10; when x = 0, the square
has side length 0. Since the edges of the pyramid are lines, it is easy to
figure that each cross-sectional square has side length 2x, giving A(x) =
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(2x)2 = 4x2. We have

V =
∫ 5

0
4x2 dx

=
4
3

x3
∣∣∣
5

0

=
500

3
in3 ≈ 166.67 in3.

We can check our work by consulting the general equation for the volume
of a pyramid (see the back cover under “Volume of A General Cone”):

1
3
× area of base× height.

Certainly, using this formula from geometry is faster than our new
method, but the calculus-based method can be applied to much more
than just cones.

Summary

In this section, we encountered the following important ideas:

• We can use a definite integral to find the volume of a three-dimensional solid of revolution that results
from revolving a two-dimensional region about a particular axis by taking slices perpendicular to the axis
of revolution which will then be circular disks or washers.

• If we revolve about a vertical line and slice perpendicular to that line, then our slices are horizontal and of
thickness 4y. This leads us to integrate with respect to y, as opposed to with respect to x when we slice
a solid vertically.

• If we revolve about a line other than the x- or y-axis, we need to carefully account for the shift that occurs
in the radius of a typical slice. Normally, this shift involves taking a sum or difference of the function along
with the constant connected to the equation for the horizontal or vertical line; a well-labeled diagram is
usually the best way to decide the new expression for the radius.
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Exercises

Terms and Concepts

1) T/F: A solid of revolution is formed by revolving a
shape around an axis.

2) In your own words, explain how the Disk and Washer
Methods are related.

3) Explain the how the units of volume are found in the
integral: if A(x) has units of in2, how does

∫
A(x) dx

have units of in3?

Problems
In Exercises 4–7, a region of the Cartesian plane is
shaded. Use the Disk/Washer Method to find the vol-
ume of the solid of revolution formed by revolving the
region about the x-axis.
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In Exercises 8-11, a region of the Cartesian plane is
shaded. Use the Disk/Washer Method to find the vol-
ume of the solid of revolution formed by revolving the
region about the y-axis.
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11)
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y = cos x
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(Hint: Integration By Parts will be necessary, twice.
First let u = arccos2 x, then let u = arccos x.)

In Exercises 12–17, a region of the Cartesian plane is
described. Use the Disk/Washer Method to find the
volume of the solid of revolution formed by rotating
the region about each of the given axes.

12) Region bounded by: y =
√

x, y = 0 and x = 1.
Rotate about:

(a) the x-axis

(b) y = 1

(c) the y-axis

(d) x = 1

13) Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) the x-axis

(b) y = 4

(c) y = −1

(d) x = 2
14) The triangle with vertices (1, 1), (1, 2) and (2, 1).

Rotate about:

(a) the x-axis

(b) y = 2

(c) the y-axis

(d) x = 1

15) Region bounded by y = x2 − 2x + 2 and y = 2x− 1.
Rotate about:

(a) the x-axis

(b) y = 1

(c) y = 5

16) Region bounded by y = 1/
√

x2 + 1, x = −1, x = 1
and the x-axis.
Rotate about:

(a) the x-axis

(b) y = 1

(c) y = −1

17) Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the x-axis

(b) y = 4

(c) the y-axis

(d) x = 2

In Exercises 18–21, a solid is described. Orient the
solid along the x-axis such that a cross-sectional area
function A(x) can be obtained, then find the volume
of the solid.

18) A right circular cone with height of 10 and base ra-
dius of 5.

5

1
0

19) A skew right circular cone with height of 10 and base
radius of 5. (Hint: all cross-sections are circles.)

5

1
0

20) A right triangular cone with height of 10 and whose
base is a right, isosceles triangle with side length 4.

4 4

1
0

21) A solid with length 10 with a rectangular base and
triangular top, wherein one end is a square with side
length 5 and the other end is a triangle with base and
height of 5.

10

5

5

5
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6.2 Volume by The Shell Method

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• Is there other methods to use a definite integral to find the volume of a three-dimensional solid or a solid
of revolution that results from revolving a two-dimensional region about a particular axis?

• In what circumstances do we integrate with respect to y instead of integrating with respect to x?

• When is it better to use the Shell Method as oppossed to the Washer Method?

Introduction

Often a given problem can be solved in more than one way. A
particular method may be chosen out of convenience, personal
preference, or perhaps necessity. Ultimately, it is good to have
options.

The previous section introduced the Disk and Washer Meth-
ods, which computed the volume of solids of revolution by inte-
grating the cross-sectional area of the solid. This section devel-
ops another method of computing volume, the Shell Method.
Instead of slicing the solid perpendicular to the axis of rotation
creating cross-sections, we now slice it parallel to the axis of
rotation, creating “shells.”

The Preview Activity 6.2 introduces a situation where using
the Washer Method from Section 6.1 becomes very tedious.

Figure 6.9: The circular cone described in Preview
Activity 6.2

Preview Activity 6.2

Consider the function f (x) = x2 − x3, whose graph is in Figure 6.9. Our
goal in this activity is to use a definite integral to determine the volume
of the solid formed by revolving the region bounded by f (x) and y = 0
about the y-axis.

(a) Using the Washer Method, find an expression for the inner and
outer radii of a slice.

(b) Set up a definite integral to find the volume. If you try to evaluate
the integral, what do you notice that happens?

(c) Find where the local maximum occurs.

(d) Use the results of past c) to split the solid into two pieces. Set up
two definite integrals to find the volume of the original solid.

Consider Figure 6.10-(a), where the region shown rotated
around the y-axis forming the solid shown in Figure 6.10-(b).
A small slice of the region is drawn in Figure 6.10-(a), parallel
to the axis of rotation. When the region is rotated, this thin slice
forms a cylindrical shell, as pictured in Figure 6.10-(c). The
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previous section approximated a solid with lots of thin disks (or
washers); we now approximate a solid with many thin cylindri-
cal shells.

To compute the volume of one shell, first consider the paper
label on a soup can with radius r and height h. What is the area
of this label? A simple way of determining this is to cut the label
and lay it out flat, forming a rectangle with height h and length
2πr. Thus the area is A = 2πrh; see Figure 6.11-(a).
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(c)

Figure 6.10: Introducing the Shell Method.

Do a similar process with a cylindrical shell, with height h,
thickness ∆x, and approximate radius r. Cutting the shell and
laying it flat forms a rectangular solid with length 2πr, height
h and depth ∆x. Thus the volume is V ≈ 2πrh∆x; see Fig-
ure 6.11-(b). (We say “approximately” since our radius was an
approximation.)

By breaking the solid into n cylindrical shells, we can ap-
proximate the volume of the solid as

V =
n

∑
i=1

2πrihi∆xi,

where ri, hi and ∆xi are the radius, height and thickness of the
i th shell, respectively.

This is a Riemann Sum. Taking a limit as the thickness of the
shells approaches 0 leads to a definite integral.
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V ≈ 2πrh∆x

(b)

Figure 6.11: Determining the volume of a thin
cylindrical shell.

The Shell Method

Let a solid be formed by revolving a region R, bounded by
x = a and x = b, around a vertical axis. Let r(x) represent
the distance from the axis of rotation to x (i.e., the radius of
a sample shell) and let h(x) represent the height of the solid
at x (i.e., the height of the shell). The volume of the solid is

V = 2π
∫ b

a
r(x)h(x) dx.

Special Cases:

1) When the region R is bounded above by y = f (x) and below
by y = g(x), then h(x) = f (x)− g(x).

2) When the axis of rotation is the y-axis (i.e., x = 0) then r(x) =
x.

Let’s practice using the Shell Method.
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Example 1

Find the volume of the solid formed by rotating the region bounded by
y = 0, y = 1/(1 + x2), x = 0 and x = 1 about the y-axis.

Solution. This is the region used to introduce the Shell Method in
Figure 6.10, but is sketched again in Figure 6.12 for closer reference. A
line is drawn in the region parallel to the axis of rotation representing
a shell that will be carved out as the region is rotated about the y-axis.
(This is the differential element.)

The distance this line is from the axis of rotation determines r(x); as
the distance from x to the y-axis is x, we have r(x) = x. The height of this
line determines h(x); the top of the line is at y = 1/(1+ x2), whereas the
bottom of the line is at y = 0. Thus h(x) = 1/(1 + x2)− 0 = 1/(1 + x2).
The region is bounded from x = 0 to x = 1, so the volume is

V = 2π
∫ 1

0

x
1 + x2 dx.

This requires substitution. Let u = 1+ x2, so du = 2x dx. We also change
the bounds: u(0) = 1 and u(1) = 2. Thus we have:

= π
∫ 2

1

1
u

du

= π ln u
∣∣∣
2

1

= π ln 2 ≈ 2.178 units3.

Note: in order to find this volume using the Disk Method, two integrals
would be needed to account for the regions above and below y = 1/2.

.....

h(x)
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Figure 6.12: Graphing a region in Example 1.

With the Shell Method, nothing special needs to be accounted
for to compute the volume of a solid that has a hole in the mid-
dle, as demonstrated next.
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Figure 6.13: Graphing a region in Example 2.

Example 2

Find the volume of the solid formed by rotating the triangular region
determined by the points (0, 1), (1, 1) and (1, 3) about the line x = 3.

Solution. The region is sketched in Figure 6.13 along with the differen-
tial element, a line within the region parallel to the axis of rotation.

The height of the differential element is the distance from y = 1
to y = 2x + 1, the line that connects the points (0, 1) and (1, 3). Thus
h(x) = 2x + 1− 1 = 2x. The radius of the shell formed by the differential
element is the distance from x to x = 3; that is, it is r(x) = 3− x. The
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x-bounds of the region are x = 0 to x = 1, giving

V = 2π
∫ 1

0
(3− x)(2x) dx

= 2π
∫ 1

0

(
6x− 2x2) dx

= 2π

(
3x2 − 2

3
x3
) ∣∣∣

1

0

=
14
3

π ≈ 14.66 units3.
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Figure 6.14: Graphing a region in Example 2.

Activity 6.2–1

In each of the following questions, draw a careful, labeled sketch of the
region described, as well as the resulting solid that results from revolving
the region about the stated axis. In addition, draw a representative slice
and state the volume of that slice, along with a definite integral whose
value is the volume of the entire solid. It is not necessary to evaluate the
integrals you find.

(a) The region S bounded by the y-axis, the curve y =
√

x, and the line
y = 2; revolve S about the y-axis.

(b) The region S bounded by the x-axis, the curve y =
√

x, and the line
x = 4; revolve S about the y-axis.

(c) The finite region S in the first quadrant bounded by the curves y =

2x and y = x3; revolve S about the y-axis.

(d) The finite region S bounded by the curves x = (y − 1)2 and y =

x− 1; revolve S about the y-axis.

(e) How do you answers to this activity compare to the results of Ac-
tivty 6.1–2?

When revolving a region around a horizontal axis, we must
consider the radius and height functions in terms of y, not x.
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Figure 6.15: Graphing a region in Example 3.

Example 3

Find the volume of the solid formed by rotating the region given in Ex-
ample 2 about the x-axis.

Solution. The region is sketched in Figure 6.15 with a sample differ-
ential element and the solid is sketched in Figure 6.16. (Note that the
region looks slightly different than it did in the previous example as the
bounds on the graph have changed.)

The height of the differential element is an x-distance, between x =
1
2 y− 1

2 and x = 1. Thus h(y) = 1− ( 1
2 y− 1

2 ) = − 1
2 y + 3

2 . The radius is
the distance from y to the x-axis, so r(y) = y. The y bounds of the region
are y = 1 and y = 3, leading to the integral
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V = 2π
∫ 3

1

[
y
(
−1

2
y +

3
2

)]
dy

= 2π
∫ 3

1

[
−1

2
y2 +

3
2

y
]

dy

= 2π

[
−1

6
y3 +

3
4

y2
] ∣∣∣

3

1

= 2π

[
9
4
− 7

12

]

=
10
3

π ≈ 10.472 units3.
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Figure 6.16: Graphing a region in Example 3.

Activity 6.2–2

In each of the following questions, draw a careful, labeled sketch of the
region described, as well as the resulting solid that results from revolving
the region about the stated axis. In addition, draw a representative slice
and state the volume of that slice, along with a definite integral whose
value is the volume of the entire solid. It is not necessary to evaluate the
integrals you find.

(a) The region S bounded by the y-axis, the curve y =
√

x, and the line
y = 2; revolve S about the y-axis.

(b) The region S bounded by the x-axis, the curve y =
√

x, and the line
x = 4; revolve S about the y-axis.

(c) The finite region S in the first quadrant bounded by the curves y =

2x and y = x3; revolve S about the x-axis.

(d) The finite region S in the first quadrant bounded by the curves y =

2x and y = x3; revolve S about the y-axis.

(e) The finite region S bounded by the curves x = (y − 1)2 and y =

x− 1; revolve S about the y-axis

At the beginning of this section it was stated that “it is good
to have options.” The next example finds the volume of a solid
rather easily with the Shell Method, but using the Washer Method
would be quite a chore.

.....
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Figure 6.17: Graphing a region in Example 4.

Example 4

Find the volume of the solid formed by revolving the region bounded by
y = sin(x) and the x-axis from x = 0 to x = π about the y-axis.

Solution. The region and the resulting solid are given in Figure 6.17

and Figure 6.18 respectively.
The radius of a sample shell is r(x) = x; the height of a sample shell

is h(x) = sin(x), each from x = 0 to x = π. Thus the volume of the solid
is

V = 2π
∫ π

0
x sin(x) dx.
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This requires Integration By Parts. Set u = x and dv = sin(x) dx; we
leave it to the reader to fill in the rest. We have:

= 2π
[
− x cos(x)

∣∣∣
π

0
+
∫ π

0
cos(x) dx

]

= 2π
[
π + sin(x)

∣∣∣
π

0

]

= 2π
[
π + 0

]

= 2π2 ≈ 19.74 units3.

Note that in order to use the Washer Method, we would need to
solve y = sin(x) for x, requiring the use of the arcsine function. We
leave it to the reader to verify that the outside radius function is R(y) =
π − arcsin(y) and the inside radius function is r(y) = arcsin(y). Thus
the volume can be computed as

π
∫ 1

0

[
(π − arcsin(y))2 − (arcsin(y))2

]
dy.

This integral isn’t terrible given that the arcsin2(y) terms cancel, but it is
more onerous than the integral created by the Shell Method.
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Figure 6.18: Graphing a region in Example 4.

Summary

In this section, we encountered the following important ideas:

• We can use a definite integral to find the volume of a three-dimensional solid of revolution that results
from revolving a two-dimensional region about a particular axis by taking slices parallel to the axis of
revolution which will then be cylindrical shells.

• If we revolve about a vertical line and slice perpendicular to that line, then our shells are vertical and of
thickness 4x. This leads us to integrate with respect to x.

• If we revolve about a horizontal line and slice parallel to that line, then our shells are horizontal and of
thickness 4y. This leads us to integrate with respect to y, as opposed to with respect to x when we slice
a solid vertically.

• Let a region R be given with x-bounds x = a and x = b and y-bounds y = c and y = d.

Washer Method Shell Method

Horizontal
Axis

π
∫ b

a

(
R(x)2 − r(x)2) dx 2π

∫ d

c
r(y)h(y) dy

Vertical
Axis

π
∫ d

c

(
R(y)2 − r(y)2) dy 2π

∫ b

a
r(x)h(x) dx
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Exercises

Terms and Concepts

1) T/F: A solid of revolution is formed by revolving a
shape around an axis.

2) T/F: The Shell Method can only be used when the
Washer Method fails.

3) T/F: The Shell Method works by integrating cross–
sectional areas of a solid.

4) T/F: When finding the volume of a solid of revolu-
tion that was revolved around a vertical axis, the Shell
Method integrates with respect to x.

Problems
In Exercises 5–8, a region of the Cartesian plane is
shaded. Use the Shell Method to find the volume of
the solid of revolution formed by revolving the region
about the y-axis.
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In Exercises 9–12, a region of the Cartesian plane is
shaded. Use the Shell Method to find the volume of
the solid of revolution formed by revolving the region
about the x-axis.

9)

.....

y = 3 − x2

.
−2
.

−1
.

1
.

2
.

1

.

2

.

3

. x.

y

10)

.....

y = 5x

.
0.5

.
1

.
1.5

.
2

.

5

.

10

. x.

y

11)

.....

y = cos x

. 0.5. 1. 1.5.

0.5

.

1

.
x

.

y



452 Chapter 6. Applications of Integration

12)
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In Exercises 13–18, a region of the Cartesian plane is
described. Use the Shell Method to find the volume of
the solid of revolution formed by rotating the region
about each of the given axes.

13) Region bounded by: y =
√

x, y = 0 and x = 1.

Rotate about:

(a) the y-axis

(b) x = 1

(c) the x-axis

(d) y = 1

14) Region bounded by: y = 4− x2 and y = 0.

Rotate about:

(a) x = 2

(b) x = −2

(c) the x-axis

(d) y = 4

15) The triangle with vertices (1, 1), (1, 2) and (2, 1).

Rotate about:

(a) the y-axis

(b) x = 1

(c) the x-axis

(d) y = 2

16) Region bounded by y = x2 − 2x + 2 and y = 2x− 1.

Rotate about:

(a) the y-axis

(b) x = 1

(c) x = −1

17) Region bounded by y = 1/
√

x2 + 1, x = −1, x = 1
and the x-axis.

Rotate about:

(a) the y-axis

(b) x = 1

(c) y = −1

18) Region bounded by y = 2x, y = x and x = 2.

Rotate about:

(a) the y-axis

(b) x = 2

(c) the x-axis

(d) y = 4
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6.3 Arc Length and Surface Area

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How can a definite integral be used to measure the length of a curve?

• How can a definite integral be used to measure the surface area of a solid of revolution?

Introduction

y = f(x)

a b

A =
∫ b

a
f(x) dx

Figure 6.19: The area between a nonnegative func-
tion f and the x-axis on the interval [a, b].

Early on in our work with the definite integral, we learned that
if we have a nonnegative velocity function, v, for an object mov-
ing along an axis, the area under the velocity function between
a and b tells us the distance the object traveled on that time in-
terval. Moreover, based on the definition of the definite integral,
that area is given precisely by

∫ b
a v(t) dt. Indeed, for any non-

negative function f on an interval [a, b], we know that
∫ b

a f (x) dx
measures the area bounded by the curve and the x-axis between
x = a and x = b, as shown in Figure 6.19.

Through our upcoming work in the present section and chap-
ter, we will explore how definite integrals can be used to repre-
sent a variety of different physically important properties. In
Preview Activity 6.1, we begin this investigation by seeing how
a single definite integral may be used to represent the area be-
tween two curves.

Preview Activity 6.3

In the following, we consider the function f (x) = 1− x2 over the interval
[−1, 1]. Our goal is to estimate the length of the curve.

(a) Graph f (x) over the interval [−1, 1]. Label the points on the curve
that correspond to x = −1,− 1

2 , 0, 1/2, and 1.

(b) Draw the secant line connecting the points (−1, f (−1) and
(− 1

2 , f (− 1
2 )). Use the distance formula to find the length of the

secant line from x = −1 to x = − 1
2 .

(c) Repeat drawing a secant line between the remaining points starting
with (− 1

2 , f (− 1
2 )) and (0, f (0)). For each line segment , use the

distance formula to find the length of the segment.

(d) Add the distances together to get an approximation to the length of
the curve.

(e) How can we improve our approximation? Write a Riemann sum
that will give an improvement to our approximation.
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Finding the length of a curve

In addition to being able to use definite integrals to find the
volumes of solids of revolution, we can also use the definite in-
tegral to find the length of a portion of a curve. We use the same
fundamental principle: we take a curve whose length we cannot
easily find, and slice it up into small pieces whose lengths we
can easily approximate. In particular, we take a given curve and
subdivide it into small approximating line segments, as shown
at left in Figure 6.20.

x

y
f

x0 x1 x2 x3
△x

△yh

L

Figure 6.20: At left, a continuous function y = f (x)
whose length we seek on the interval a = x0 to
b = x3. At right, a close up view of a portion of the
curve.

To see how we find such a definite integral that measures arc
length on the curve y = f (x) from x = a to x = b, we think
about the portion of length, Lslice, that lies along the curve on
a small interval of length 4x, and estimate the value of Lslice

using a well-chosen triangle. In particular, if we consider the
right triangle with legs parallel to the coordinate axes and hy-
potenuse connecting two points on the curve, as seen at right in
Figure 6.20, we see that the length, h, of the hypotenuse approx-
imates the length, Lslice, of the curve between the two selected
points. Thus,

Lslice ≈ h =
√
(4x)2 + (4y)2.

By algebraically rearranging the expression for the length of the
hypotenuse, we see how a definite integral can be used to com-
pute the length of a curve. In particular, observe that by remov-
ing a factor of (4x)2, we find that

Lslice ≈
√
(4x)2 + (4y)2

=

√
(4x)2

(
1 +

(4y)2

(4x)2

)

=

√
1 +

(4y)2

(4x)2 · 4x.

Furthermore, as n→ ∞ and 4x → 0, it follows that 4y
4x →

dy
dx =

f ′(x). Thus, we can say that

Lslice ≈
√

1 + f ′(x)24x.

Taking a Riemann sum of all of these slices and letting n → ∞,
we arrive at the following fact.
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Arc Length

Given a differentiable function f on an interval [a, b], the
total arc length, L, along the curve y = f (x) from x = a to
x = b is given by

L =
∫ b

a

√
1 + f ′(x)2 dx.

Example 1

Find the arc length of f (x) = x3/2 from x = 0 to x = 4.

Solution. We begin by finding f ′(x) = 3
2 x1/2. Using the formula, we

find the arc length L as

L =
∫ 4

0

√
1 +

(
3
2

x1/2
)2

dx

=
∫ 4

0

√
1 +

9
4

x dx

=
∫ 4

0

(
1 +

9
4

x
)1/2

dx

=
2
3

4
9

(
1 +

9
4

x
)3/2 ∣∣∣

4

0

=
8

27

(
103/2 − 1

)
≈ 9.07units.

A graph of f is given in Figure 6.21.
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Figure 6.21: A graph of f (x) = x3/2 from Exam-
ple 1.

Example 2

Find the arc length of f (x) =
1
8

x2 − ln x from x = 1 to x = 2.

Solution. This function was chosen specifically because the resulting
integral can be evaluated exactly. We begin by finding f ′(x) = x/4− 1/x.
The arc length is

L =
∫ 2

1

√
1 +

(
x
4
− 1

x

)2
dx

=
∫ 2

1

√

1 +
x2

16
− 1

2
+

1
x2 dx
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=
∫ 2

1

√
x2

16
+

1
2
+

1
x2 dx

=
∫ 2

1

√(
x
4
+

1
x

)2
dx

=
∫ 2

1

(
x
4
+

1
x

)
dx

=

(
x2

8
+ ln x

) ∣∣∣∣∣

2

1

=
3
8
+ ln 2 ≈ 1.07 units.

A graph of f is given in Figure 6.22; the portion of the curve mea-
sured in this problem is in bold.
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Figure 6.22: A graph of f (x) = 1
8 x2 − ln x from

Example 2.

x
√

1 + cos2 x
0

√
2

π/4
√

3/2
π/2 1

3π/4
√

3/2
π

√
2

Table 6.1: A table of values of y =
√

1 + cos2 x to
evaluate a definite integral in Example 3.

Example 3

Find the length of the sine curve from x = 0 to x = π.

Solution. This is somewhat of a mathematical curiosity; in Activity 4.5–
1 (b) we found the area under one “hump” of the sine curve is 2 square
units; now we are measuring its arc length.

The setup is straightforward: f (x) = sin x and f ′(x) = cos x. Thus

L =
∫ π

0

√
1 + cos2 x dx.

This integral cannot be evaluated in terms of elementary functions so we
will approximate it with Simpson’s Method with n = 4.

Table 6.1 gives
√

1 + cos2 x evaluated at 5 evenly spaced points in
[0, π]. Simpson’s Rule then states that
∫ π

0

√
1 + cos2 x dx ≈ π − 0

4 · 3
(√

2 + 4
√

3/2 + 2(1) + 4
√

3/2 +
√

2
)

= 3.82918.

Using a computer with n = 100 the approximation is L ≈ 3.8202; our
approximation with n = 4 is quite good.

Activity 6.3–1

Each of the following questions somehow involves the arc length along a
curve.

(a) Use the definition and appropriate computational technology to de-
termine the arc length along y = x2 from x = −1 to x = 1.

(b) Find the arc length of y =
√

4− x2 on the interval 0 ≤ x ≤ 4. Find
this value in two different ways: (a) by using a definite integral, and
(b) by using a familiar property of the curve.

(c) Determine the arc length of y = xe3x on the interval [0, 1].

(d) Will the integrals that arise calculating arc length typically be ones
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that we can evaluate exactly using the First FTC, or ones that we
need to approximate? Why?

(e) A moving particle is traveling along the curve given by y = f (x) =
0.1x2 + 1, and does so at a constant rate of 7 cm/sec, where both x
and y are measured in cm (that is, the curve y = f (x) is the path
along which the object actually travels; the curve is not a “position
function”). Find the position of the particle when t = 4 sec, assum-
ing that when t = 0, the particle’s location is (0, f (0)).

Surface Area of Solids of Revolution

We have already seen how a curve y = f (x) on [a, b] can be
revolved around an axis to form a solid. Instead of computing
its volume, we now consider its surface area.

...

..
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.

xi

.

xi+1

.

b

.

x

.

y
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Figure 6.23: Establishing the formula for surface
area.

We begin as we have in the previous sections: we partition
the interval [a, b] with n subintervals, where the i th subinterval
is [xi, xi+1]. On each subinterval, we can approximate the curve
y = f (x) with a straight line that connects f (xi) and f (xi+1)
as shown in Figure 6.23 (a). Revolving this line segment about
the x-axis creates part of a cone (called the frustum of a cone)
as shown in Figure 6.23 (b). The surface area of a frustum of a
cone is

2π · length · average of the two radii R and r.

The length is given by L; we use the material just covered by
arc length to state that

L ≈
√

1 + f ′(ci)∆xi

for some ci in the i th subinterval. The radii are just the function
evaluated at the endpoints of the interval. That is,

R = f (xi+1) and r = f (xi).

Thus the surface area of this sample frustum of the cone is
approximately

2π
f (xi) + f (xi+1)

2

√
1 + f ′(ci)2∆xi.

Since f is a continuous function, the Intermediate Value The-
orem states there is some di in [xi, xi+1] such that

f (di) =
f (xi) + f (xi+1)

2
; we can use this to rewrite the above

equation as

2π f (di)
√

1 + f ′(ci)2∆xi.
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Summing over all the subintervals we get the total surface area
to be approximately

Surface Area ≈
n

∑
i=1

2π f (di)
√

1 + f ′(ci)2∆xi,

which is a Riemann Sum. Taking the limit as the subinterval
lengths go to zero gives us the exact surface area, given in the
following Key Idea.

Surface Area of a Solid of Revolution

Let f be differentiable on an open interval containing [a, b]
where f ′ is also continuous on [a, b].

1) The surface area of the solid formed by revolving the
graph of y = f (x), where f (x) ≥ 0, about the x-axis is

Surface Area = 2π
∫ b

a
f (x)

√
1 + f ′(x)2 dx.

2) The surface area of the solid formed by revolving the
graph of y = f (x) about the y-axis, where a, b ≥ 0, is

Surface Area = 2π
∫ b

a
x
√

1 + f ′(x)2 dx.

When revolving y = f (x) about the y-axis, the radii
of the resulting frustum are xi and xi+1; their aver-
age value is simply the midpoint of the interval. In
the limit, this midpoint is just x.

Example 4

Find the surface area of the solid formed by revolving y = sin x on [0, π]

around the x-axis, as shown in Figure 6.24.

Solution. The setup is relatively straightforward; we have the surface
area SA is:

SA = 2π
∫ π

0
sin x

√
1 + cos2 x dx

= 2π
∫ 1

−1

√
1 + u2 du

= 2π
∫ π/4

−π/4
sec3 θ dθ

= 2π
√

2.

The integration above is nontrivial, utilizing Substitution, Trigonometric
Substitution, and Integration by Parts.

...

.. π.

−1

.

1

.

x

.

y

Figure 6.24: Revolving y = sin x on [0, π] about the
x-axis.
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Example 5

Find the surface area of the solid formed by revolving the curve y = x2

on [0, 1] about:

1) the x-axis

2) the y-axis.

Solution.

1) The integral is straightforward to setup:

SA = 2π
∫ 1

0
x2
√

1 + (2x)2 dx.

Like the integral in Example 4, this requires Trigonometric Substitu-
tion.

=
π

32

(
2(8x3 + x)

√
1 + 4x2 − sinh−1(2x)

)∣∣∣
1

0

=
π

32

(
18
√

5− sinh−1 2
)

≈ 3.81 units2.

The solid formed by revolving y = x2 around the x-axis is graphed in
Figure 6.25-(a).

2) Since we are revolving around the y-axis, the “radius” of the solid is
not f (x) but rather x. Thus the integral to compute the surface area
is:

SA = 2π
∫ 1

0
x
√

1 + (2x)2 dx.

This integral can be solved using substitution. Set u = 1 + 4x2; the
new bounds are u = 1 to u = 5. We then have

=
π

4

∫ 5

1

√
u du

=
π

4
2
3

u3/2
∣∣∣∣
5

1

=
π

6

(
5
√

5− 1
)

≈ 5.33 units2.

The solid formed by revolving y = x2 about the y-axis is graphed in
Figure 6.25-(b).
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Figure 6.25: The solids used in Example 5

This last example is a famous mathematical “paradox.”

Example 6

Consider the solid formed by revolving y = 1/x about the x-axis on
[1, ∞). Find the volume and surface area of this solid. (This shape, as
graphed in Figure 6.26, is known as “Gabriel’s Horn” since it looks like a
very long horn that only a supernatural person, such as an angel, could
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play.)

Solution. To compute the volume it is natural to use the Disk Method.
We have:

V = π
∫ ∞

1

1
x2 dx

= lim
b→∞

π
∫ b

1

1
x2 dx

= lim
b→∞

π

(−1
x

)∣∣∣∣
b

1

= lim
b→∞

π

(
1− 1

b

)

= π units3.

Gabriel’s Horn has a finite volume of π cubic units. Since we have al-
ready seen that objects with infinite length can have a finite area, this is
not too difficult to accept.

We now consider its surface area. The integral is straightforward to
setup:

SA = 2π
∫ ∞

1

1
x

√
1 + 1/x4 dx.

Integrating this expression is not trivial. We can, however, compare it to
other improper integrals. Since 1 <

√
1 + 1/x4 on [1, ∞), we can state

that

2π
∫ ∞

1

1
x

dx < 2π
∫ ∞

1

1
x

√
1 + 1/x4 dx.

The improper integral on the left diverges. Since the integral on the
right is larger, we conclude it also diverges, meaning Gabriel’s Horn has
infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Horn with a finite amount
of paint, but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of
volume and area. However, we have seen a similar paradox before, as
referenced above. We know that the area under the curve y = 1/x2 on
[1, ∞) is finite, yet the shape has an infinite perimeter. Strange things can
occur when we deal with the infinite.
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Figure 6.26: A graph of Gabriel’s Horn.

Summary

In this section, we encountered the following important ideas:

• To find the area between two curves, we think about slicing the region into thin rectangles. If, for instance,
the area of a typical rectangle on the interval x = a to x = b is given by Arect = (g(x)− f (x))4x, then
the exact area of the region is given by the definite integral

A =
∫ b

a
(g(x)− f (x)) dx.
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• The shape of the region usually dictates whether we should use vertical rectangles of thickness 4x or
horizontal rectangles of thickness 4y. We desire to have the height of the rectangle governed by the
difference between two curves: if those curves are best thought of as functions of y, we use horizontal
rectangles, whereas if those curves are best viewed as functions of x, we use vertical rectangles.

• The arc length, L, along the curve y = f (x) from x = a to x = b is given by

L =
∫ b

a

√
1 + f ′(x)2 dx.
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Exercises

Terms and Concepts

1) T/F: The integral formula for computing Arc Length
was found by first approximating arc length with
straight line segments.

2) T/F: The integral formula for computing Arc Length
includes a square–root, meaning the integration is
probably easy.

Problems
In Exercises 3–11, find the arc length of the function on
the given integral.

3) f (x) = x on [0, 1]

4) f (x) =
√

8x on [−1, 1]

5) f (x) =
1
3

x3/2 − x1/2 on [0, 1]

6) f (x) =
1
12

x3 +
1
x

on [1, 4]

7) f (x) = 2x3/2 − 1
6
√

x on [0, 9]

8) f (x) =
1
2
(
ex + e−x) on [0, ln 5]

9) f (x) =
1
12

x5 +
1

5x3 on [.1, 1]

10) f (x) = ln
(

sin x
)

on [π/6, π/2]

11) f (x) = ln
(

cos x
)

on [0, π/4]

In Exercises 12–19, set up the integral to compute the
arc length of the function on the given interval. Try to
compute the integral by hand, and use a CAS to com-
pute the integral. Also, use Simpson’s Rule with n = 4
to approximate the arc length.

12) f (x) = x2 on [0, 1].

13) f (x) = x10 on [0, 1]

14) f (x) =
√

x on [0, 1]

15) f (x) = ln x on [1, e]

16) f (x) =
√

1− x2 on [−1, 1]. (Note: this describes the
top half of a circle with radius 1.)

17) f (x) =
√

1− x2/9 on [−3, 3]. (Note: this describes
the top half of an ellipse with a major axis of length
6 and a minor axis of length 2.)

18) f (x) =
1
x

on [1, 2]

19) f (x) = sec x on [−π/4, π/4].

In Exercises 20–24, find the surface area of the de-
scribed solid of revolution.

20) The solid formed by revolving y = 2x on [0, 1] about
the x-axis.

21) The solid formed by revolving y = x2 on [0, 1] about
the y-axis.

22) The solid formed by revolving y = x3 on [0, 1] about
the x-axis.

23) The solid formed by revolving y =
√

x on [0, 1] about
the x-axis.

24) The sphere formed by revolving y =
√

1− x2 on
[−1, 1] about the x-axis.
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6.4 Density, Mass, and Center of Mass

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How are mass, density, and volume related?

• How is the mass of an object with varying density computed?

• What is the center of mass of an object, and how are definite integrals used to compute it?

Introduction

We have seen in several different circumstances how studying
the units on the integrand and variable of integration enables
us to better understand the meaning of a definite integral. For
instance, if v(t) is the velocity of an object moving along an axis,
measured in feet per second, while t measures time in seconds,
then both the definite integral and its Riemann sum approxima-
tion, ∫ b

a
v(t) dt ≈

n

∑
i=1

v(ti)4t,

have their overall units given by the product of the units of v(t)
and t:

(feet/sec)·(sec) = feet.

Thus,
∫ b

a v(t) dt measures the total change in position (in feet) of
the moving object.

This type of unit analysis will be particularly helpful to us
in what follows. To begin, in the following preview activity we
consider two different definite integrals where the integrand is a
function that measures how a particular quantity is distributed
over a region and think about how the units on the integrand
and the variable of integration indicate the meaning of the inte-
gral.

Preview Activity 6.4

In each of the following scenarios, we consider the distribution of a quan-
tity along an axis.

(a) Suppose that the function c(x) = 200+ 100e−0.1x models the density
of traffic on a straight road, measured in cars per mile, where x
is number of miles east of a major interchange, and consider the
definite integral

∫ 2
0 (200 + 100e−0.1x) dx.

i. What are the units on the product c(x) · 4x?

ii. What are the units on the definite integral and its Riemann sum
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approximation given by

∫ 2

0
c(x) dx ≈

n

∑
i=1

c(xi)4x?

iii. Evaluate the definite integral
∫ 2

0 c(x) dx =
∫ 2

0 (200+ 100e−0.1x) dx
and write one sentence to explain the meaning of the value you
find.

(b) On a 6 foot long shelf filled with books, the function B models the
distribution of the weight of the books, measured in pounds per
inch, where x is the number of inches from the left end of the book-
shelf. Let B(x) be given by the rule B(x) = 0.5 + 1

(x+1)2 .

i. What are the units on the product B(x) · 4x?

ii. What are the units on the definite integral and its Riemann sum
approximation given by

∫ 36

12
B(x) dx ≈

n

∑
i=1

B(xi)4x?

iii. Evaluate the definite integral
∫ 72

0 B(x) dx =
∫ 72

0 (0.5 + 1
(x+1)2 ) dx

and write one sentence to explain the meaning of the value you
find.

Density

The mass of a quantity, typically measured in metric units such
as grams or kilograms, is a measure of the amount of a quantity.
In a corresponding way, the density of an object measures the
distribution of mass per unit volume. For instance, if a brick has
mass 3 kg and volume 0.002 m3, then the density of the brick is

3kg
0.002m3 = 1500

kg
m3 .

As another example, the mass density of water is 1000 kg/m3.
Each of these relationships demonstrate the following general
principle.

Density, Mass, & Volume

For an object of constant density d, with mass m and volume
V,

d =
m
V

, or m = d ·V.

But what happens when the density is not constant?
If we consider the formula m = d ·V, it is reminiscent of two

other equations that we have used frequently in recent work: for
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a body moving in a fixed direction, distance = rate · time, and,
for a rectangle, its area is given by A = l · w. These formulas
hold when the principal quantities involved, such as the rate the
body moves and the height of the rectangle, are constant. When
these quantities are not constant, we have turned to the definite
integral for assistance. The main idea in each situation is that by
working with small slices of the quantity that is varying, we can
use a definite integral to add up the values of small pieces on
which the quantity of interest (such as the velocity of a moving
object) are approximately constant.

For example, in the setting where we have a nonnegative ve-
locity function that is not constant, over a short time interval
4t we know that the distance traveled is approximately v(t)4t,
since v(t) is almost constant on a small interval, and for a con-
stant rate, distance = rate · time. Similarly, if we are thinking
about the area under a nonnegative function f whose value is
changing, on a short interval 4x the area under the curve is
approximately the area of the rectangle whose height is f (x)
and whose width is 4x: f (x)4x. Both of these principles are
represented visually in Figure 6.27.

ft/sec

sec

y = v(t)

v(t)

△t

y

x

y = f(x)

f(x)

△x

Figure 6.27: At left, estimating a small amount
of distance traveled, v(t)4t, and at right, a small
amount of area under the curve, f (x)4x.

In a similar way, if we consider the setting where the density
of some quantity is not constant, the definite integral enables us
to still compute the overall mass of the quantity. Throughout,
we will focus on problems where the density varies in only one
dimension, say along a single axis, and think about how mass is
distributed relative to location along the axis.

Let’s consider a thin bar of length b that is situated so its
left end is at the origin, where x = 0, and assume that the bar
has constant cross-sectional area of 1 cm2. We let the function
ρ(x) represent the mass density function of the bar, measured
in grams per cubic centimeter. That is, given a location x, ρ(x)
tells us approximately how much mass will be found in a one-
centimeter wide slice of the bar at x.

△x

ρ(x)

Figure 6.28: A thin bar of constant cross-sectional
area 1 cm2 with density function ρ(x) g/cm3.If we now consider a thin slice of the bar of width 4x, as

pictured in Figure 6.28, the volume of such a slice is the cross-
sectional area times 4x. Since the cross-sections each have con-
stant area 1 cm2, it follows that the volume of the slice is 14x
cm3. Moreover, since mass is the product of density and volume
(when density is constant), we see that the mass of this given
slice is approximately

massslice ≈ ρ(x)
g

cm3 · 14x cm3 = ρ(x) · 4x g.
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Hence, for the corresponding Riemann sum (and thus for the
integral that it approximates),

n

∑
i=1

ρ(xi)4x ≈
∫ b

0
ρ(x) dx,

we see that these quantities measure the mass of the bar between
0 and b. (The Riemann sum is an approximation, while the
integral will be the exact mass.)

At this point, we note that we will be focused primarily on
situations where mass is distributed relative to horizontal loca-
tion, x, for objects whose cross-sectional area is constant. In that
setting, it makes sense to think of the density function ρ(x) with
units “mass per unit length,” such as g/cm. Thus, when we
compute ρ(x) · 4x on a small slice 4x, the resulting units are
g/cm · cm = g, which thus measures the mass of the slice. The
general principle follows.

Mass

For an object of constant cross-sectional area whose mass
is distributed along a single axis according to the function
ρ(x) (whose units are units of mass per unit of length), the
total mass, M of the object between x = a and x = b is given
by

M =
∫ b

a
ρ(x) dx.

Example 1

A thin bar occupies the interval 0 ≤ x ≤ 2 and it has a density in kg/m
of ρ(x) = 1 + x2. Find the mass of the bar.

Solution. The mass of the bar in kilograms is

m =
∫ b

a
ρ(x) dx

=
∫ 2

0
(1 + x2) dx

=

(
x +

x3

3

) ∣∣∣
2

0

=
14
3

kg.
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Activity 6.4–1

Consider the following situations in which mass is distributed in a non-
constant manner.

(a) Suppose that a thin rod with constant cross-sectional area of 1 cm2

has its mass distributed according to the density function ρ(x) =

2e−0.2x, where x is the distance in cm from the left end of the rod,
and the units on ρ(x) are g/cm. If the rod is 10 cm long, determine
the exact mass of the rod.

(b) Consider the cone that has a base of radius 4 m and a height of 5 m.
Picture the cone lying horizontally with the center of its base at the
origin and think of the cone as a solid of revolution.

i. Write and evaluate a definite integral whose value is the volume
of the cone.

ii. Next, suppose that the cone has uniform density of 800 kg/m3.
What is the mass of the solid cone?

iii. Now suppose that the cone’s density is not uniform, but rather
that the cone is most dense at its base. In particular, assume that
the density of the cone is uniform across cross sections parallel
to its base, but that in each such cross section that is a distance
x units from the origin, the density of the cross section is given
by the function ρ(x) = 400 + 200

1+x2 , measured in kg/m3. Deter-
mine and evaluate a definite integral whose value is the mass of
this cone of non-uniform density. Do so by first thinking about
the mass of a given slice of the cone x units away from the base;
remember that in such a slice, the density will be essentially con-
stant.

(c) Let a thin rod of constant cross-sectional area 1 cm2 and length 12

cm have its mass be distributed according to the density function
ρ(x) = 1

25 (x− 15)2, measured in g/cm. Find the exact location z at
which to cut the bar so that the two pieces will each have identical
mass.

Weighted Averages
class grade grade points credits

chemistry B+ 3.3 5
calculus A- 3.7 4
history B- 2.7 3
psychology B- 2.7 3

Table 6.2: A college student’s semester grades.

The concept of an average is a natural one, and one that we have
used repeatedly as part of our understanding of the meaning of
the definite integral. If we have n values a1, a2, . . ., an, we know
that their average is given by

a1 + a2 + · · ·+ an

n
,

and for a quantity being measured by a function f on an interval
[a, b], the average value of the quantity on [a, b] is

1
b− a

∫ b

a
f (x) dx.

As we continue to think about problems involving the distri-
bution of mass, it is natural to consider the idea of a weighted
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average, where certain quantities involved are counted more in
the average.

A common use of weighted averages is in the computation of
a student’s GPA, where grades are weighted according to credit
hours. Let’s consider the scenario in Table 6.2.

If all of the classes were of the same weight (i.e., the same
number of credits), the student’s GPA would simply be calcu-
lated by taking the average

3.3 + 3.7 + 2.7 + 2.7
4

= 3.1.

But since the chemistry and calculus courses have higher weights
(of 5 and 4 credits respectively), we actually compute the GPA
according to the weighted average

3.3 · 5 + 3.7 · 4 + 2.7 · 3 + 2.7 · 3
5 + 4 + 3 + 3

= 3.16.

The weighted average reflects the fact that chemistry and cal-
culus, as courses with higher credits, have a greater impact on
the students’ grade point average. Note particularly that in the
weighted average, each grade gets multiplied by its weight, and
we divide by the sum of the weights.

In the following activity, we explore further how weighted
averages can be used to find the balancing point of a physical
system.

Activity 6.4–2

For quantities of equal weight, such as two children on a teeter-totter, the
balancing point is found by taking the average of their locations. When
the weights of the quantities differ, we use a weighted average of their
respective locations to find the balancing point.

(a) Suppose that a shelf is 6 feet long, with its left end situated at x = 0.
If one book of weight 1 lb is placed at x1 = 0, and another book of
weight 1 lb is placed at x2 = 6, what is the location of x, the point
at which the shelf would (theoretically) balance on a fulcrum?

(b) Now, say that we place four books on the shelf, each weighing 1 lb:
at x1 = 0, at x2 = 2, at x3 = 4, and at x4 = 6. Find x, the balancing
point of the shelf.

(c) How does x change if we change the location of the third book?
Say the locations of the 1-lb books are x1 = 0, x2 = 2, x3 = 3, and
x4 = 6.

(d) Next, suppose that we place four books on the shelf, but of varying
weights: at x1 = 0 a 2-lb book, at x2 = 2 a 3-lb book, and x3 = 4 a
1-lb book, and at x4 = 6 a 1-lb book. Use a weighted average of the
locations to find x, the balancing point of the shelf. How does the
balancing point in this scenario compare to that found in (b)?

(e) What happens if we change the location of one of the books? Say
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that we keep everything the same in (d), except that x3 = 5. How
does x change?

(f) What happens if we change the weight of one of the books? Say that
we keep everything the same in (d), except that the book at x3 = 4
now weighs 2 lbs. How does x change?

(g) Experiment with a couple of different scenarios of your choosing
where you move the location of one of the books to the left, or you
decrease the weight of one of the books.

(h) Write a couple of sentences to explain how adjusting the location of
one of the books or the weight of one of the books affects the loca-
tion of the balancing point of the shelf. Think carefully here about
how your changes should be considered relative to the location of
the balancing point x of the current scenario.

Center of Mass

In Activity 6.4–2, we saw that the balancing point of a system
of point-masses1 (such as books on a shelf) is found by taking 1 In the activity, we actually used weight rather than

mass. Since weight is computed by the gravitational
constant times mass, the computations for the bal-
ancing point result in the same location regardless
of whether we use weight or mass, since the grav-
itational constant is present in both the numerator
and denominator of the weighted average.

a weighted average of their respective locations. In the activity,
we were computing the center of mass of a system of masses
distributed along an axis, which is the balancing point of the
axis on which the masses rest.

Center of Mass

For a collection of n masses m1, . . ., mn that are distributed
along a single axis at the locations x1, . . ., xn, the center of
mass is given by

x =
x1m1 + x2m2 + · · · xnmn

m1 + m2 + · · ·+ mn
.

What if we instead consider a thin bar over which density is
distributed continuously? If the density is constant, it is obvious
that the balancing point of the bar is its midpoint. But if density
is not constant, we must compute a weighted average. Let’s say
that the function ρ(x) tells us the density distribution along the
bar, measured in g/cm. If we slice the bar into small sections,
this enables us to think of the bar as holding a collection of
adjacent point-masses. For a slice of thickness 4x at location xi,
note that the mass of the slice, mi, satisfies mi ≈ ρ(xi)4x.

△x

ρ(x)

Figure 6.29: A thin bar of constant cross-sectional
area with density function ρ(x) g/cm.Taking n slices of the bar, we can approximate its center of

mass by

x ≈ x1 · ρ(x1)4x + x2 · ρ(x2)4x + · · ·+ xn · ρ(xn)4x
ρ(x1)4x + ρ(x2)4x + · · ·+ ρ(xn)4x

.
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Rewriting the sums in sigma notation, it follows that

x ≈ ∑n
i=1 xi · ρ(xi)4x
∑n

i=1 ρ(xi)4x
. (6.1)

Moreover, it is apparent that the greater the number of slices,
the more accurate our estimate of the balancing point will be,
and that the sums in Equation (6.1) can be viewed as Riemann
sums. Hence, in the limit as n → ∞, we find that the center of
mass is given by the quotient of two integrals.

Center of Mass

For a thin rod of density ρ(x) distributed along an axis from
x = a to x = b, the center of mass of the rod is given by

x =

∫ b
a xρ(x) dx
∫ b

a ρ(x) dx
.

Note particularly that the denominator of x is the mass of the
bar, and that this quotient of integrals is simply the continuous
version of the weighted average of locations, x, along the bar.

Example 2

A thin bar occupies the interval 0 ≤ x ≤ 2 and it has a density in kg/m
of ρ(x) = 1 + x2. Find the center of mass of the bar.

Solution. From Example 1, the mass of the bar in kilograms is 14
3 kg.

We just need to find
∫ b

a xρ(x) dx.

∫ b

a
ρ(x) dx =

∫ 2

0
x(1 + x2) dx

=
∫ 2

0
(x + x3) dx

=

(
x2

2
+

x4

4

) ∣∣∣
2

0

= 8.

The center of mass, x, 00is 8
14/3 = 12

7 .

Activity 6.4–3

Consider a thin bar of length 20 cm whose density is distributed accord-
ing to the function ρ(x) = 4 + 0.1x, where x = 0 represents the left end
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of the bar. Assume that ρ is measured in g/cm and x is measured in cm.

(a) Find the total mass, M, of the bar.

(b) Without doing any calculations, do you expect the center of mass of
the bar to be equal to 10, less than 10, or greater than 10? Why?

(c) Compute x, the exact center of mass of the bar.

(d) What is the average density of the bar?

(e) Now consider a different density function, given by p(x) = 4e0.020732x,
also for a bar of length 20 cm whose left end is at x = 0. Plot both
ρ(x) and p(x) on the same axes. Without doing any calculations,
which bar do you expect to have the greater center of mass? Why?

(f) Compute the exact center of mass of the bar described in (e) whose
density function is p(x) = 4e0.020732x. Check the result against the
prediction you made in (e).

Summary

In this section, we encountered the following important ideas:

• For an object of constant density D, with volume V and mass m, we know that m = D ·V.

• If an object with constant cross-sectional area (such as a thin bar) has its density distributed along an axis
according to the function ρ(x), then we can find the mass of the object between x = a and x = b by

m =
∫ b

a
ρ(x) dx.

• For a system of point-masses distributed along an axis, say m1, . . . , mn at locations x1, . . . , xn, the center of
mass, x, is given by the weighted average

x =
∑n

i=1 ximi

∑n
i=1 mi

.

If instead we have mass continuously distributed along an axis, such as by a density function ρ(x) for a
thin bar of constant cross-sectional area, the center of mass of the portion of the bar between x = a and
x = b is given by

x =

∫ b
a xρ(x) dx
∫ b

a ρ(x) dx
.

In each situation, x represents the balancing point of the system of masses or of the portion of the bar.
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Exercises

Terms and Concepts
1) T/F: The integral formula for computing Arc Length

was found by first approximating arc length with
straight line segments.

2) T/F: The integral formula for computing Arc Length
includes a square–root, meaning the integration is
probably easy.

Problems
3) Let a thin rod of length a have density distribution

function ρ(x) = 10e−0.1x, where x is measured in cm
and ρ in grams per centimeter.

(a) If the mass of the rod is 30 g, what is the value
of a?

(b) For the 30g rod, will the center of mass lie at its
midpoint, to the left of the midpoint, or to the
right of the midpoint? Why?

(c) For the 30g rod, find the center of mass, and
compare your prediction in (b).

(d) At what value of x should the 30g rod be cut in
order to form two pieces of equal mass?

4) Consider two thin bars of constant cross-sectional
area, each of length 10 cm, with respective mass den-
sity functions ρ(x) = 1

1+x2 and p(x) = e−0.1x.

(a) Find the mass of each bar.
(b) Find the center of mass of each bar.
(c) Now consider a new 10 cm bar whose mass den-

sity function is f (x) = ρ(x) + p(x).
i. Explain how you can easily find the mass

of this new bar with little to no additional
work.

ii. Similarly, compute
∫ 10

0 x f (x) dx as simply
as possible, in light of earlier computations.

iii. True or false: the center of mass of this new
bar is the average of the centers of mass
of the two earlier bars. Write at least one
sentence to say why your conclusion makes
sense.

5) Consider the curve given by y = f (x) = 2xe−1.25x +

(30− x)e−0.25(30−x).

(a) Plot this curve in the window x = 0 . . . 30, y =

0 . . . 3 (with constrained scaling so the units on
the x and y axis are equal), and use it to gen-
erate a solid of revolution about the x-axis. Ex-
plain why this curve could generate a reasonable
model of a baseball bat.

(b) Let x and y be measured in inches. Find the total
volume of the baseball bat generated by revolv-
ing the given curve about the x-axis. Include
units on your answer

(c) Suppose that the baseball bat has constant
weight density, and that the weight density is
0.6 ounces per cubic inch. Find the total weight
of the bat whose volume you found in (b).

(d) Because the baseball bat does not have constant
cross-sectional area, we see that the amount of
weight concentrated at a location x along the bat
is determined by the volume of a slice at location
x. Explain why we can think about the function
ρ(x) = 0.6π f (x)2 (where f is the function given
at the start of the problem) as being the weight
density function for how the weight of the base-
ball bat is distributed from x = 0 to x = 30.

(e) Compute the center of mass of the baseball bat.



6.5. Physics Applications: Work, Force, and Pressure 473

6.5 Physics Applications: Work, Force, and Pressure

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• How do we measure the work accomplished by a varying force that moves an object a certain distance?

• What is the total force exerted by water against a dam?

• How are both of the above concepts and their corresponding use of definite integrals similar to problems
we have encountered in the past involving formulas such as “distance equals rate times time” and “mass
equals density times volume”?

Introduction

In our work to date with the definite integral, we have seen
several different circumstances where the integral enables us to
measure the accumulation of a quantity that varies, provided
the quantity is approximately constant over small intervals. For
instance, based on the fact that the area of a rectangle is A =
l ·w, if we wish to find the area bounded by a nonnegative curve
y = f (x) and the x-axis on an interval [a, b], a representative
slice of width 4x has area Aslice = f (x)4x, and thus as we let
the width of the representative slice tend to zero, we find that
the exact area of the region is

A =
∫ b

a
f (x) dx.

In a similar way, if we know that the velocity of a moving ob-
ject is given by the function y = v(t), and we wish to know
the distance the object travels on an interval [a, b] where v(t) is
nonnegative, we can use a definite integral to generalize the fact
that d = r · t when the rate, r, is constant. More specifically,
on a short time interval 4t, v(t) is roughly constant, and hence
for a small slice of time, dslice = v(t)4t, and so as the width of
the time interval 4t tends to zero, the exact distance traveled is
given by the definite integral

d =
∫ b

a
v(t) dt.

Finally, when we recently learned about the mass of an object
of non-constant density, we saw that since M = D · V (mass
equals density times volume, provided that density is constant),
if we can consider a small slice of an object on which the density
is approximately constant, a definite integral may be used to
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determine the exact mass of the object. For instance, if we have
a thin rod whose cross sections have constant density, but whose
density is distributed along the x axis according to the function
y = ρ(x), it follows that for a small slice of the rod that is 4x
thick, Mslice = ρ(x)4x. In the limit as 4x → 0, we then find
that the total mass is given by

M =
∫ b

a
ρ(x) dx.

Note that all three of these situations are similar in that we
have a basic rule (A = l · w, d = r · t, M = D · V) where one
of the two quantities being multiplied is no longer constant; in
each, we consider a small interval for the other variable in the
formula, calculate the approximate value of the desired quantity
(area, distance, or mass) over the small interval, and then use a
definite integral to sum the results as the length of the small
intervals is allowed to approach zero. It should be apparent that
this approach will work effectively for other situations where
we have a quantity of interest that varies.

We next turn to the notion of work: from physics, a basic
principal is that work is the product of force and distance. For
example, if a person exerts a force of 20 pounds to lift a 20-
pound weight 4 feet off the ground, the total work accomplished
is

W = F · d = 20 · 4 = 80 foot-pounds.

If force and distance are measured in English units (pounds and
feet), then the units on work are foot-pounds. If instead we work
in metric units, where forces are measured in Newtons and dis-
tances in meters, the units on work are Newton-meters.

Of course, the formula W = F · d only applies when the force
is constant while it is exerted over the distance d. In Preview
Activity 6.5, we explore one way that we can use a definite in-
tegral to compute the total work accomplished when the force
exerted varies.

Preview Activity 6.5

A bucket is being lifted from the bottom of a 50-foot deep well; its weight
(including the water), B, in pounds at a height h feet above the wa-
ter is given by the function B(h). When the bucket leaves the water,
the bucket and water together weigh B(0) = 20 pounds, and when the
bucket reaches the top of the well, B(50) = 12 pounds. Assume that the
bucket loses water at a constant rate (as a function of height, h) through-
out its journey from the bottom to the top of the well.

(a) Find a formula for B(h).

(b) Compute the value of the product B(5)4h, where 4h = 2 feet.
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Include units on your answer. Explain why this product represents
the approximate work it took to move the bucket of water from
h = 5 to h = 7.

(c) Is the value in (b) an over- or under-estimate of the actual amount
of work it took to move the bucket from h = 5 to h = 7? Why?

(d) Compute the value of the product B(22)4h, where 4h = 0.25 feet.
Include units on your answer. What is the meaning of the value you
found?

(e) More generally, what does the quantity Wslice = B(h)4h measure
for a given value of h and a small positive value of 4h?

(f) Evaluate the definite integral
∫ 50

0 B(h) dh. What is the meaning of
the value you find? Why?

Work

Because work is calculated by the rule W = F · d, whenever the
force F is constant, it follows that we can use a definite integral
to compute the work accomplished by a varying force. For ex-
ample, suppose that in a setting similar to the problem posed in
Preview Activity 6.5, we have a bucket being lifted in a 50-foot
well whose weight at height h is given by B(h) = 12 + 8e−0.1h.

In contrast to the problem in the preview activity, this bucket
is not leaking at a constant rate; but because the weight of the
bucket and water is not constant, we have to use a definite in-
tegral to determine the total work that results from lifting the
bucket. Observe that at a height h above the water, the approxi-
mate work to move the bucket a small distance 4h is

Wslice = B(h)4h = (12 + 8e−0.1h)4h.

Hence, if we let 4h tend to 0 and take the sum of all of the
slices of work accomplished on these small intervals, it follows
that the total work is given by

W =
∫ 50

0
B(h) dh =

∫ 50

0
(12 + 8e−0.1h) dh.

While is a straightforward exercise to evaluate this integral ex-
actly using the Fundamental Theorem of Calculus, in applied
settings such as this one we will typically use computing tech-
nology to find accurate approximations of integrals that are of
interest to us. Here, it turns out that W =

∫ 50
0 (12+ 8e−0.1h) dh ≈

679.461 foot-pounds.
Our work in the most recent example above employs the fol-

lowing important general principle.
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Work

For an object being moved in the positive direction along
an axis, x, by a force F(x), the total work to move the object
from a to b is given by

W =
∫ b

a
F(x) dx.

Example 1

How much work is performed pulling a 60 m climbing rope up a cliff
face, where the rope has a mass of 66 g/m?

Solution. We need to create a force function F(x) on the interval [0, 60].
To do so, we must first decide what x is measuring: it is the length of
the rope still hanging or is it the amount of rope pulled in? As long as
we are consistent, either approach is fine. We adopt for this example the
convention that x is the amount of rope pulled in. This seems to match
intuition better; pulling up the first 10 meters of rope involves x = 0 to
x = 10 instead of x = 60 to x = 50.

As x is the amount of rope pulled in, the amount of rope still hanging
is 60− x. This length of rope has a mass of 66 g/m, or 0.066 kg/m. The
the mass of the rope still hanging is 0.066(60− x) kg; multiplying this
mass by the acceleration of gravity, 9.8 m/s2, gives our variable force
function

F(x) = (9.8)(0.066)(60− x) = 0.6468(60− x).

Thus the total work performed in pulling up the rope is

W =
∫ 60

0
0.6468(60− x) dx = 1, 164.24 J.

By comparison, consider the work done in lifting the entire rope 60

meters. The rope weights 60× 0.066× 9.8 = 38.808 N, so the work ap-
plying this force for 60 meters is 60× 38.808 = 2, 328.48 J. This is exactly
twice the work calculated before (and we leave it to the reader to under-
stand why.)

Example 2

A box of 100 lb of sand is being pulled up at a uniform rate a distance of
50 ft over 1 minute. The sand is leaking from the box at a rate of 1 lb/s.
The box itself weighs 5 lb and is pulled by a rope weighing .2 lb/ft.

1. How much work is done lifting just the rope?

2. How much work is done lifting just the box and sand?
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3. What is the total amount of work performed?

Solution.

1. We start by forming the force function Fr(x) for the rope (where the
subscript denotes we are considering the rope). As in the previous
example, let x denote the amount of rope, in feet, pulled in. (This is
the same as saying x denotes the height of the box.) The weight of the
rope with x feet pulled in is Fr(x) = 0.2(50− x) = 10− 0.2x. (Note
that we do not have to include the acceleration of gravity here, for the
weight of the rope per foot is given, not its mass per meter as before.)
The work performed lifting the rope is

Wr =
∫ 50

0
(10− 0.2x) dx = 250 ft–lb.

2. The sand is leaving the box at a rate of 1 lb/s. As the vertical trip is
to take one minute, we know that 60 lb will have left when the box
reaches its final height of 50 ft. Again letting x represent the height of
the box, we have two points on the line that describes the weight of
the sand: when x = 0, the sand weight is 100 lb, producing the point
(0, 100); when x = 50, the sand in the box weighs 40 lb, producing
the point (50, 40). The slope of this line is 100−40

0−50 = −1.2, giving the
equation of the weight of the sand at height x as w(x) = −1.2x + 100.
The box itself weighs a constant 5 lb, so the total force function is
Fb(x) = −1.2x + 105. Integrating from x = 0 to x = 50 gives the work
performed in lifting box and sand:

Wb =
∫ 50

0
(−1.2x + 105) dx = 3750 ft–lb.

3. The total work is the sum of Wr and Wb: 250 + 3750 = 4000 ft–lb. We
can also arrive at this via integration:

W =
∫ 50

0
(Fr(x) + Fb(x)) dx

=
∫ 50

0
(10− 0.2x− 1.2x + 105) dx

=
∫ 50

0
(−1.4x + 115) dx

= 4000 ft–lb.

Example 3

Hooke’s Law states that the force required to compress or stretch a spring
x units from its natural length is proportional to x; that is, this force is
F(x) = kx for some constant k.

A force of 20 lb stretches a spring from a length of 7 inches to a length
of 12 inches. How much work was performed in stretching the spring to
this length?

Solution. In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do
not care that 20 lb of force stretches the spring to a length of 12 inches, but
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rather that a force of 20 lb stretches the spring by 5 in. This is illustrated
in Figure ??; we only measure the change in the spring’s length, not the
overall length of the spring.

Converting the units of length to feet, we have

F(5/12) = 5/12k = 20 lb.

Thus k = 48 lb/ft and F(x) = 48x.
We compute the total work performed by integrating F(x) from x = 0

to x = 5/12:

W =
∫ 5/12

0
48x dx

= 24x2
∣∣∣
5/12

0

= 25/6 ≈ 4.1667 ft–lb.

Activity 6.5–1

Consider the following situations in which a varying force accomplishes
work.

(a) Suppose that a heavy rope hangs over the side of a cliff. The rope
is 200 feet long and weighs 0.3 pounds per foot; initially the rope
is fully extended. How much work is required to haul in the entire
length of the rope? (Hint: set up a function F(h) whose value is
the weight of the rope remaining over the cliff after h feet have been
hauled in.)

(b) A leaky bucket is being hauled up from a 100 foot deep well. When
lifted from the water, the bucket and water together weigh 40 pounds.
As the bucket is being hauled upward at a constant rate, the bucket
leaks water at a constant rate so that it is losing weight at a rate of 0.1
pounds per foot. What function B(h) tells the weight of the bucket
after the bucket has been lifted h feet? What is the total amount of
work accomplished in lifting the bucket to the top of the well?

(c) Now suppose that the bucket in (b) does not leak at a constant rate,
but rather that its weight at a height h feet above the water is given
by B(h) = 25 + 15e−0.05h. What is the total work required to lift the
bucket 100 feet? What is the average force exerted on the bucket on
the interval h = 0 to h = 100?

(d) From physics, Hooke’s Law for springs states that the amount of force
required to hold a spring that is compressed (or extended) to a par-
ticular length is proportionate to the distance the spring is com-
pressed (or extended) from its natural length. That is, the force
to compress (or extend) a spring x units from its natural length is
F(x) = kx for some constant k (which is called the spring constant.)
For springs, we choose to measure the force in pounds and the dis-
tance the spring is compressed in feet.

Suppose that a force of 5 pounds extends a particular spring 4 inches
(1/3 foot) beyond its natural length.

i. Use the given fact that F(1/3) = 5 to find the spring constant
k.
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ii. Find the work done to extend the spring from its natural length
to 1 foot beyond its natural length.

iii. Find the work required to extend the spring from 1 foot beyond
its natural length to 1.5 feet beyond its natural length.

Work: Pumping Liquid from a Tank

Figure 6.30: A sump crock.

In certain geographic locations where the water table is high,
residential homes with basements have a peculiar feature: in
the basement, one finds a large hole in the floor, and in the
hole, there is water. For example, in Figure 6.30 where we see
a sump crock2. Essentially, a sump crock provides an outlet for

2 Image credit to
http://www.warreninspect.com/basement-moisture.

water that may build up beneath the basement floor; of course,
as that water rises, it is imperative that the water not flood the
basement. Hence, in the crock we see the presence of a floating
pump that sits on the surface of the water: this pump is acti-
vated by elevation, so when the water level reaches a particular
height, the pump turns on and pumps a certain portion of the
water out of the crock, hence relieving the water buildup be-
neath the foundation. One of the questions we’d like to answer
is: how much work does a sump pump accomplish?

To that end, let’s suppose that we have a sump crock that
has the shape of a frustum of a cone, as pictured in Figure 6.31.
Assume that the crock has a diameter of 3 feet at its surface, a
diameter of 1.5 feet at its base, and a depth of 4 feet. In addition,
suppose that the sump pump is set up so that it pumps the water
vertically up a pipe to a drain that is located at ground level just
outside a basement window. To accomplish this, the pump must
send the water to a location 9 feet above the surface of the sump
crock.

x+

y+

(0, 1.5)

(4, 0.75)

△x x

y = f(x)

Figure 6.31: A sump crock with approximately
cylindrical cross-sections that is 4 feet deep, 1.5 feet
in diameter at its base, and 3 feet in diameter at its
top.

It turns out to be advantageous to think of the depth below
the surface of the crock as being the independent variable, so,
in problems such as this one we typically let the positive x-axis
point down, and the positive x-axis to the right, as pictured in
the figure. As we think about the work that the pump does, we
first realize that the pump sits on the surface of the water, so
it makes sense to think about the pump moving the water one
“slice” at a time, where it takes a thin slice from the surface,
pumps it out of the tank, and then proceeds to pump the next
slice below.

For the sump crock described in this example, each slice of
water is cylindrical in shape. We see that the radius of each
approximately cylindrical slice varies according to the linear
function y = f (x) that passes through the points (0, 1.5) and
(4, 0.75), where x is the depth of the particular slice in the tank;
it is a straightforward exercise to find that f (x) = 1.5− 0.375x.

http://www.warreninspect.com/basement-moisture
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Now we are prepared to think about the overall problem in sev-
eral steps: (a) determining the volume of a typical slice; (b) find-
ing the weight3 of a typical slice (and thus the force that must3 We assume that the weight density of water is 62.4

pounds per cubic foot. be exerted on it); (c) deciding the distance that a typical slice
moves; and (d) computing the work to move a representative
slice. Once we know the work it takes to move one slice, we use
a definite integral over an appropriate interval to find the total
work.

Consider a representative cylindrical slice that sits on the sur-
face of the water at a depth of x feet below the top of the crock.
It follows that the approximate volume of that slice is given by

Vslice = π f (x)24x = π(1.5− 0.375x)24x.

Since water weighs 62.4 lb/ft3, it follows that the approximate
weight of a representative slice, which is also the approximate
force the pump must exert to move the slice, is

Fslice = 62.4 ·Vslice = 62.4π(1.5− 0.375x)24x.

Because the slice is located at a depth of x feet below the top of
the crock, the slice being moved by the pump must move x feet
to get to the level of the basement floor, and then, as stated in
the problem description, be moved another 9 feet to reach the
drain at ground level outside a basement window. Hence, the
total distance a representative slice travels is

dslice = x + 9.

Finally, we note that the work to move a representative slice is
given by

Wslice = Fslice · dslice = 62.4π(1.5− 0.375x)24x · (x + 9),

since the force to move a particular slice is constant.
We sum the work required to move slices throughout the tank

(from x = 0 to x = 4), let 4x → 0, and hence

W =
∫ 4

0
62.4π(1.5− 0.375x)2(x + 9) dx,

which, when evaluated using appropriate technology, shows
that the total work is W = 1872π foot-pounds.

The preceding example demonstrates the standard approach
to finding the work required to empty a tank filled with liquid.
The main task in each such problem is to determine the volume
of a representative slice, followed by the force exerted on the
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slice, as well as the distance such a slice moves. In the case
where the units are metric, there is one key difference: in the
metric setting, rather than weight, we normally first find the
mass of a slice. For instance, if distance is measured in meters,
the mass density of water is 1000 kg/m3. In that setting, we can
find the mass of a typical slice (in kg). To determine the force
required to move it, we use F = ma, where m is the object’s mass
and a is the gravitational constant 9.81 N/kg3. That is, in metric
units, the weight density of water is 9810 N/m3.
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Figure 6.32: Illustrating a water tank in order to
compute the work required to empty it in Exam-
ple 4.

Example 4

A cylindrical storage tank with a radius of 10 ft and a height of 30 ft is
filled with water, which weighs approximately 62.4 lb/ft3. Compute the
amount of work performed by pumping the water up to a point 5 feet
above the top of the tank.

Solution. We will refer often to Figure 6.32 which illustrates the salient
aspects of this problem.

We start as we often do: we partition an interval into subintervals. We
orient our tank vertically since this makes intuitive sense with the base
of the tank at y = 0. Hence the top of the water is at y = 30, meaning we
are interested in subdividing the y-interval [0, 30] into n subintervals as

0 = y1 < y2 < · · · < yn+1 = 30.

Consider the work Wi of pumping only the water residing in the i th

subinterval, illustrated in Figure 6.32. The force required to move this
water is equal to its weight which we calculate as volume × density. The
volume of water in this subinterval is Vi = 102π∆yi; its density is 62.4
lb/ft3. Thus the required force is 6240π∆yi lb.

We approximate the distance the force is applied by using any y-value
contained in the i th subinterval; for simplicity, we arbitrarily use yi for
now (it will not matter later on). The water will be pumped to a point 5

feet above the top of the tank, that is, to the height of y = 35 ft. Thus the
distance the water at height yi travels is 35− yi ft.

In all, the approximate work Wi performed in moving the water in the
i th subinterval to a point 5 feet above the tank is

Wi ≈ 6240π∆yi(35− yi),

and the total work performed is

W ≈
n

∑
i=1

Wi =
n

∑
i=1

6240π∆yi(35− yi).

This is a Riemann sum. Taking the limit as the subinterval length goes
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to 0 gives

W =
∫ 30

0
6240π(35− y) dy

= (6240π
(

35y− 1/2y2
) ∣∣∣

30

0

= 11, 762, 123 ft–lb

≈ 1.176× 107 ft–lb.
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Figure 6.33: A graph of the conical water tankt in
Example 5.

Example 5

A conical water tank has its top at ground level and its base 10 feet below
ground. The radius of the cone at ground level is 2 ft. It is filled with
water weighing 62.4 lb/ft3 and is to be emptied by pumping the water
to a spigot 3 feet above ground level. Find the total amount of work
performed in emptying the tank.

Solution. The conical tank is sketched in Figure 6.33. We can orient the
tank in a variety of ways; we could let y = 0 represent the base of the
tank and y = 10 represent the top of the tank, but we choose to keep the
convention of the wording given in the problem and let y = 0 represent
ground level and hence y = −10 represents the bottom of the tank. The
actual “height” of the water does not matter; rather, we are concerned
with the distance the water travels.

The figure also sketches a differential element, a cross–sectional circle.
The radius of this circle is variable, depending on y. When y = −10, the
circle has radius 0; when y = 0, the circle has radius 2. These two points,
(−10, 0) and (0, 2), allow us to find the equation of the line that gives
the radius of the cross–sectional circle, which is r(y) = 1/5y + 2. Hence
the volume of water at this height is V(y) = π(1/5y + 2)2dy, where
dy represents a very small height of the differential element. The force
required to move the water at height y is F(y) = 62.4×V(y).

The distance the water at height y travels is given by h(y) = 3− y.
Thus the total work done in pumping the water from the tank is

W =
∫ 0

−10
62.4π(1/5y + 2)2(3− y) dy

= 62.4π
∫ 0

−10

(
− 1

25
y3 − 17

25
y2 − 8

5
y + 12

)
dy

= 62.2π · 220
3
≈ 14, 376 ft–lb.

Example 6

A rectangular swimming pool is 20 ft wide and has a 3 ft “shallow end”
and a 6 ft “deep end.” It is to have its water pumped out to a point 2 ft
above the current top of the water. The cross–sectional dimensions of the
water in the pool are given in Figure 6.34; note that the dimensions are
for the water, not the pool itself. Compute the amount of work performed
in draining the pool.
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Solution. For the purposes of this problem we choose to set y = 0
to represent the bottom of the pool, meaning the top of the water is at
y = 6.

Figure 6.35 shows the pool oriented with this y-axis, along with 2

differential elements as the pool must be split into two different regions.
The top region lies in the y-interval of [3, 6], where the length of the

differential element is 25 ft as shown. As the pool is 20 ft wide, this
differential element represents a this slice of water with volume V(y) =
20 · 25 · dy. The water is to be pumped to a height of y = 8, so the height
function is h(y) = 8− y. The work done in pumping this top region of
water is

Wt = 62.4
∫ 6

3
500(8− y) dy = 327, 600 ft–lb.

The bottom region lies in the y-interval of [0, 3]; we need to compute
the length of the differential element in this interval.

One end of the differential element is at x = 0 and the other is along
the line segment joining the points (10, 0) and (15, 3). The equation of
this line is y = 3/5(x− 10); as we will be integrating with respect to y, we
rewrite this equation as x = 5/3y + 10. So the length of the differential
element is a difference of x-values: x = 0 and x = 5/3y + 10, giving a
length of x = 5/3y + 10.

Again, as the pool is 20 ft wide, this differential element represents a
thin slice of water with volume V(y) = 20 · (5/3y + 10) · dy; the height
function is the same as before at h(y) = 8− y. The work performed in
emptying this part of the pool is

Wb = 62.4
∫ 3

0
20(5/3y + 10)(8− y) dy = 299, 520 ft–lb.

The total work in emptying the pool is

W = Wb + Wt = 327, 600 + 299, 520 = 627, 120 ft–lb.

Notice how the emptying of the bottom of the pool performs almost
as much work as emptying the top. The top portion travels a shorter
distance but has more water. In the end, this extra water produces more
work.
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Figure 6.34: The cross–section of a swimming pool
filled with water in Example 6.
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Figure 6.35: Orienting the pool and showing differ-
ential elements for Example 6.
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Figure 6.36: A trough with triangular ends, as de-
scribed in Activity 6.4–2, part (c).

Activity 6.5–2

In each of the following problems, determine the total work required
to accomplish the described task. In parts (b) and (c), a key step is to
find a formula for a function that describes the curve that forms the side
boundary of the tank.

(a) Consider a vertical cylindrical tank of radius 2 meters and depth 6

meters. Suppose the tank is filled with 4 meters of water of mass
density 1000 kg/m3, and the top 1 meter of water is pumped over
the top of the tank.

(b) Consider a hemispherical tank with a radius of 10 feet. Suppose
that the tank is full to a depth of 7 feet with water of weight density
62.4 pounds/ft3, and the top 5 feet of water are pumped out of the
tank to a tanker truck whose height is 5 feet above the top of the
tank.
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(c) Consider a trough with triangular ends, as pictured in Figure 6.36,
where the tank is 10 feet long, the top is 5 feet wide, and the tank
is 4 feet deep. Say that the trough is full to within 1 foot of the top
with water of weight density 62.4 pounds/ft3, and a pump is used
to empty the tank until the water remaining in the tank is 1 foot
deep.

Force due to Hydrostatic Pressure

When a dam is built, it is imperative to for engineers to under-
stand how much force water will exert against the face of the
dam. The first thing we realize is the the force exerted by the
fluid is related to the natural concept of pressure. The pressure
a force exerts on a region is measured in units of force per unit
of area: for example, the air pressure in a tire is often measured
in pounds per square inch (PSI). Hence, we see that the general
relationship is given by

P =
F
A

, or F = P · A,

where P represents pressure, F represents force, and A the area
of the region being considered. Of course, in the equation F =
PA, we assume that the pressure is constant over the entire re-
gion A.

Most people know from experience that the deeper one dives
underwater while swimming, the greater the pressure that is ex-
erted by the water. This is due to the fact that the deeper one
dives, the more water there is right on top of the swimmer: it is
the force that “column” of water exerts that determines the pres-
sure the swimmer experiences. To get water pressure measured
in its standard units (pounds per square foot), we say that the
total water pressure is found by computing the total weight of
the column of water that lies above a region of area 1 square foot
at a fixed depth. Such a rectangular column with a 1× 1 base
and a depth of d feet has volume V = 1 · 1 · d ft3, and thus the
corresponding weight of the water overhead is 62.4d. Since this
is also the amount of force being exerted on a 1 square foot re-
gion at a depth d feet underwater, we see that P = 62.4d (lbs/ft2)
is the pressure exerted by water at depth d.

The understanding that P = 62.4d will tell us the pressure
exerted by water at a depth of d, along with the fact that F = PA,
will now enable us to compute the total force that water exerts
on a dam, as we see in the following example.

Example 7

Consider a trapezoid-shaped dam that is 60 feet wide at its base and 90
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feet wide at its top, and assume the dam is 25 feet tall with water that
rises to within 5 feet of the top of its face. Water weighs 62.5 pounds per
cubic foot. How much force does the water exert against the dam?

Solution. First, we sketch a picture of the dam, as shown in Figure 6.37.
Note that, as in problems involving the work to pump out a tank, we let
the positive x-axis point down.

It is essential to use the fact that pressure is constant at a fixed depth.
Hence, we consider a slice of water at constant depth on the face, such
as the one shown in the figure. First, the approximate area of this slice
is the area of the pictured rectangle. Since the width of that rectangle
depends on the variable x (which represents the how far the slice lies
from the top of the dam), we find a formula for the function y = f (x)
that determines one side of the face of the dam. Since f is linear, it is
straightforward to find that y = f (x) = 45− 3

5 x. Hence, the approximate
area of a representative slice is

Aslice = 2 f (x)4x = 2(45− 3
5

x)4x.

At any point on this slice, the depth is approximately constant, and thus
the pressure can be considered constant. In particular, we note that since
x measures the distance to the top of the dam, and because the water
rises to within 5 feet of the top of the dam, the depth of any point on
the representative slice is approximately (x− 5). Now, since pressure is
given by P = 62.4d, we have that at any point on the representative slice

Pslice = 62.4(x− 5).

Knowing both the pressure and area, we can find the force the water
exerts on the slice. Using F = PA, it follows that

Fslice = Pslice · Aslice = 62.4(x− 5) · 2(45− 3
5

x)4x.

Finally, we use a definite integral to sum the forces over the appropriate
range of x-values. Since the water rises to within 5 feet of the top of the
dam, we start at x = 5 and slice all the way to the bottom of the dam,
where x = 30. Hence,

F =
∫ x=30

x=5
62.4(x− 5) · 2(45− 3

5
x) dx.

Using technology to evaluate the integral, we find F ≈ 1.248× 106 pounds.

x− 5

△xx

(25, 30)

45

y = f(x)

x+

y+

Figure 6.37: A trapezoidal dam that is 25 feet tall,
60 feet wide at its base, 90 feet wide at its top, with
the water line 5 feet down from the top of its face.
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Figure 6.38: A thin plate in the shape of an isosceles
triangle in Example 8.

Example 8

Consider a thin plate in the shape of an isosceles triangle as shown in
Figure 6.38 submerged in water with a weight–density of 62.4 lb/ft3. If
the bottom of the plate is 10 ft below the surface of the water, what is the
total fluid force exerted on this plate?

Solution. We approach this problem in two different ways. First we
will let y = 0 represent the surface of the water, then we will consider an
alternate convention.
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1. We let y = 0 represent the surface of the water; therefore the bottom
of the plate is at y = −10. We center the triangle on the y-axis as
shown in Figure 6.39. The depth of the plate at y is −y as indicated
by the Key Idea. We now consider the length of the plate at y.

We need to find equations of the left and right edges of the plate. The
right hand side is a line that connects the points (0,−10) and (2,−6):
that line has equation x = 1/2(y + 10). (Find the equation in the
familiar y = mx + b format and solve for x.) Likewise, the left hand
side is described by the line x = −1/2(y + 10). The total length is the
distance between these two lines: `(y) = 1/2(y + 10) − (−1/2(y +

10)) = y + 10.

The total fluid force is then:

F =
∫ −6

−10
62.4(−y)(y + 10) dy

= 62.4 · 176
3
≈ 3660.8 lb.

2. Sometimes it seems easier to orient the thin plate nearer the origin.
For instance, consider the convention that the bottom of the triangular
plate is at (0, 0), as shown in Figure 6.40. The equations of the left and
right hand sides are easy to find. They are y = 2x and y = −2x,
respectively, which we rewrite as x = 1/2y and x = −1/2y. Thus the
length function is `(y) = 1/2y− (−1/2y) = y.

As the surface of the water is 10 ft above the base of the plate, we have
that the surface of the water is at y = 10. Thus the depth function is
the distance between y = 10 and y; d(y) = 10− y. We compute the
total fluid force as:

F =
∫ 4

0
62.4(10− y)(y) dy

≈ 3660.8 lb.

The correct answer is, of course, independent of the placement of the
plate in the coordinate plane as long as we are consistent.
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Figure 6.39: Sketching the triangular plate in Ex-
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Figure 6.41: Measuring the fluid force on an under-
water porthole in Example 9.

Example 9

An underwater observation tower is being built with circular viewing
portholes enabling visitors to see underwater life. Each vertically ori-
ented porthole is to have a 3 ft diameter whose center is to be located 50

ft underwater. Find the total fluid force exerted on each porthole. Also,
compute the fluid force on a horizontally oriented porthole that is under
50 ft of water.

Solution. We place the center of the porthole at the origin, meaning
the surface of the water is at y = 50 and the depth function will be
d(y) = 50− y; see Figure 6.41

The equation of a circle with a radius of 1.5 is x2 + y2 = 2.25; solving
for x we have x = ±

√
2.25− y2, where the positive square root corre-

sponds to the right side of the circle and the negative square root corre-
sponds to the left side of the circle. Thus the length function at depth y
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is `(y) = 2
√

2.25− y2. Integrating on [−1.5, 1.5] we have:

F = 62.4
∫ 1.5

−1.5
2(50− y)

√
2.25− y2 dy

= 62.4
∫ 1.5

−1.5

(
100
√

2.25− y2 − 2y
√

2.25− y2
)

dy

= 6240
∫ 1.5

−1.5

(√
2.25− y2

)
dy− 62.4

∫ 1.5

−1.5

(
2y
√

2.25− y2
)

dy

The second integral above can be evaluated using Substitution. Let u =

2.25 − y2 with du = −2y dy. The new bounds are: u(−1.5) = 0 and
u(1.5) = 0; the new integral will integrate from u = 0 to u = 0, hence the
integral is 0.

The first integral above finds the area of half a circle of radius 1.5, thus
the first integral evaluates to 6240 · π · 1.52/2 = 22, 054. Thus the total
fluid force on a vertically oriented porthole is 22, 054 lb.

Finding the force on a horizontally oriented porthole is more straight-
forward:

F = Pressure×Area = 62.4 · 50× π · 1.52 = 22, 054 lb.

That these two forces are equal is not coincidental; it turns out that the
fluid force applied to a vertically oriented circle whose center is at depth
d is the same as force applied to a horizontally oriented circle at depth
d.

x+

y+

Figure 6.42: A trough with triangular ends, as de-
scribed in Activity 6.4–3, part (c).

Activity 6.5–3

In each of the following problems, determine the total force exerted by
water against the surface that is described.

(a) Consider a rectangular dam that is 100 feet wide and 50 feet tall,
and suppose that water presses against the dam all the way to the
top.

(b) Consider a semicircular dam with a radius of 30 feet. Suppose that
the water rises to within 10 feet of the top of the dam.

(c) Consider a trough with triangular ends, as pictured in Figure 6.42,
where the tank is 10 feet long, the top is 5 feet wide, and the tank
is 4 feet deep. Say that the trough is full to within 1 foot of the
top with water of weight density 62.4 pounds/ft3. How much force
does the water exert against one of the triangular ends?

While there are many different formulas that we use in solv-
ing problems involving work, force, and pressure, it is important
to understand that the fundamental ideas behind these prob-
lems are similar to several others that we’ve encountered in ap-
plications of the definite integral. In particular, the basic idea
is to take a difficult problem and somehow slice it into more
manageable pieces that we understand, and then use a definite
integral to add up these simpler pieces.
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Summary

In this section, we encountered the following important ideas:

• To measure the work accomplished by a varying force that moves an object, we subdivide the problem
into pieces on which we can use the formula W = F · d, and then use a definite integral to sum the work
accomplished on each piece.

• To find the total force exerted by water against a dam, we use the formula F = P · A to measure the force
exerted on a slice that lies at a fixed depth, and then use a definite integral to sum the forces across the
appropriate range of depths.

• Because work is computed as the product of force and distance (provided force is constant), and the
force water exerts on a dam can be computed as the product of pressure and area (provided pressure is
constant), problems involving these concepts are similar to earlier problems we did using definite integrals
to find distance (via “distance equals rate times time”) and mass (“mass equals density times volume”).
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Exercises

Terms and Concepts
1) What are the typical units of work?

2) If a man has a mass of 80 kg on Earth, will his mass
on the moon be bigger, smaller, or the same?

3) If a woman weighs 130 lb on Earth, will her weight
on the moon be bigger, smaller, or the same?

Problems

4) A 100 ft rope, weighing 0.1 lb/ft, hangs over the edge
of a tall building.

(a) How much work is done pulling the entire rope to
the top of the building?

(b) How much rope is pulled in when half of the total
work is done?

5) A 50 m rope, with a mass density of 0.2 kg/m, hangs
over the edge of a tall building.

(a) How much work is done pulling the entire rope to
the top of the building?

(b) How much work is done pulling in the first 20 m?

6) A rope of length ` ft hangs over the edge of tall cliff.
(Assume the cliff is taller than the length of the rope.)
The rope has a weight density of d lb/ft.

(a) How much work is done pulling the entire rope to
the top of the cliff?

(b) What percentage of the total work is done pulling
in the first half of the rope?

(c) How much rope is pulled in when half of the total
work is done?

7) A 20 m rope with mass density of 0.5 kg/m hangs
over the edge of a 10 m building. How much work is
done pulling the rope to the top?

8) A crane lifts a 2,000 lb load vertically 30 ft with a 1”
cable weighing 1.68 lb/ft.

(a) How much work is done lifting the cable alone?

(b) How much work is done lifting the load alone?

(c) Could one conclude that the work done lifting the
cable is negligible compared to the work done lift-
ing the load?

9) A 100 lb bag of sand is lifted uniformly 120 ft in one
minute. Sand leaks from the bag at a rate of 1/4 lb/s.
What is the total work done in lifting the bag?

10) A box weighing 2 lb lifts 10 lb of sand vertically 50 ft.
A crack in the box allows the sand to leak out such
that 9 lb of sand is in the box at the end of the trip.
Assume the sand leaked out at a uniform rate. What
is the total work done in lifting the box and sand?

11) A force of 1000 lb compresses a spring 3 in. How
much work is performed in compressing the spring?

12) A force of 2 N stretches a spring 5 cm. How much
work is performed in stretching the spring?

13) A force of 50 lb compresses a spring from 18 in to 12

in. How much work is performed in compressing the
spring?

14) A force of 20 lb stretches a spring from 6 in to 8

in. How much work is performed in stretching the
spring?

15) A force of 7 N stretches a spring from 11 cm to 21

cm. How much work is performed in stretching the
spring?

16) A force of f N stretches a spring d m. How much
work is performed in stretching the spring?

17) A 20 lb weight is attached to a spring. The weight
rests on the spring, compressing the spring from a
natural length of 1 ft to 6 in.

How much work is done in lifting the box 1.5 ft (i.e,
the spring will be stretched 1 ft beyond its natural
length)?

18) A 20 lb weight is attached to a spring. The weight
rests on the spring, compressing the spring from a
natural length of 1 ft to 6 in.

How much work is done in lifting the box 6 in (i.e,
bringing the spring back to its natural length)?

19) A 5 m tall cylindrical tank with radius of 2 m is filled
with 3 m of gasoline, with a mass density of 737.22

kg/m3. Compute the total work performed in pump-
ing all the gasoline to the top of the tank.

20) A 6 ft cylindrical tank with a radius of 3 ft is filled
with water, which has a weight density of 62.4 lb/ft3.
The water is to be pumped to a point 2 ft above the
top of the tank.

(a) How much work is performed in pumping all the
water from the tank?

(b) How much work is performed in pumping 3 ft of
water from the tank?

(c) At what point is 1/2 of the total work done?

21) A gasoline tanker is filled with gasoline with a weight
density of 45.93 lb/ft3. The dispensing valve at the
base is jammed shut, forcing the operator to empty
the tank via pumping the gas to a point 1 ft above the
top of the tank. Assume the tank is a perfect cylinder,
20 ft long with a diameter of 7.5 ft.

How much work is performed in pumping all the
gasoline from the tank?
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22) A fuel oil storage tank is 10 ft deep with trapezoidal
sides, 5 ft at the top and 2 ft at the bottom, and is 15 ft
wide (see diagram below). Given that fuel oil weighs
55.46 lb/ft3, find the work performed in pumping all
the oil from the tank to a point 3 ft above the top of
the tank.

1
0

2

15

5

23) A conical water tank is 5 m deep with a top radius of
3 m. The tank is filled with pure water, with a mass
density of 1000 kg/m3.

(a) Find the work performed in pumping all the water
to the top of the tank.

(b) Find the work performed in pumping the top 2.5
m of water to the top of the tank.

(c) Find the work performed in pumping the top half
of the water, by volume, to the top of the tank.

24) A water tank has the shape of a truncated cone, with
dimensions given below, and is filled with water with
a weight density of 62.4 lb/ft3. Find the work per-
formed in pumping all water to a point 1 ft above the
top of the tank.

2 ft

5 ft
10 ft

25) A water tank has the shape of an inverted pyramid,
with dimensions given below, and is filled with wa-
ter with a mass density of 1000 kg/m3. Find the work
performed in pumping all water to a point 5 m above
the top of the tank.

2 m

2 m

7 m

26) A water tank has the shape of an truncated, inverted
pyramid, with dimensions given below, and is filled

with water with a mass density of 1000 kg/m3. Find
the work performed in pumping all water to a point
1 m above the top of the tank.

5 m

5 m

2 m

2 m

9 m

27) A cylindrical tank, buried on its side, has radius 3 feet
and length 10 feet. It is filled completely with water
whose weight density is 62.4 lbs/ft3, and the top of
the tank is two feet underground.

(a) Set up an integral expression that represents the
amount of work required to empty the top half
of the water in the tank to a truck whose tank
lies 4.5 feet above ground.

(b) With the tank now only half-full, set up an in-
tegral expression that represents the total force
due to hydrostatic pressure against one end of
the tank.
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6.6 An Introduction to Differential Equations

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is a differential equation and what kinds of information can it tell us?

• How do differential equations arise in the world around us?

• What do we mean by a solution to a differential equation?

• What is a slope field and how can we use a slope field to obtain qualitative information about the solutions
of a differential equation?

• What are stable and unstable equilibrium solutions of an autonomous differential equation?

Introduction

In previous chapters, we have seen that a function’s derivative
tells us the rate at which the function is changing. More recently,
the Fundamental Theorem of Calculus helped us to determine
the total change of a function over an interval when we know the
function’s rate of change. For instance, an object’s velocity tells
us the rate of change of that object’s position. By integrating the
velocity over a time interval, we may determine by how much
the position changes over that time interval. In particular, if we
know where the object is at the beginning of that interval, then
we have enough information to accurately predict where it will
be at the end of the interval.

In this section, we will introduce the concept of differential
equations and explore this idea in more depth. Simply said, a
differential equation is an equation that provides a description
of a function’s derivative, which means that it tells us the func-
tion’s rate of change. Using this information, we would like to
learn as much as possible about the function itself. For instance,
we would ideally like to have an algebraic description of the
function.

Preview Activity 6.6

The position of a moving object is given by the function s(t), where s
is measured in feet and t in seconds. We determine that the velocity is
v(t) = 4t + 1 feet per second.

(a) How much does the position change over the time interval [0, 4]?

(b) Does this give you enough information to determine s(4), the po-
sition at time t = 4? If so, what is s(4)? If not, what additional
information would you need to know to determine s(4)?

(c) Suppose you are told that the object’s initial position s(0) = 7. De-
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termine s(2), the object’s position 2 seconds later.

(d) If you are told instead that the object’s initial position is s(0) = 3,
what is s(2)?

(e) If we only know the velocity v(t) = 4t + 1, is it possible that the
object’s position at all times is s(t) = 2t2 + t− 4? Explain how you
know.

(f) Are there other possibilities for s(t)? If so, what are they?

(g) If, in addition to knowing the velocity function is v(t) = 4t + 1, we
know the initial position s(0), how many possibilities are there for
s(t)?

What is a differential equation?

A differential equation is an equation that describes the deriva-
tive, or derivatives, of a function that is unknown to us. For
instance, the equation

dy
dx

= x sin(x)

is a differential equation since it describes the derivative of a
function y(x) that is unknown to us.

As many important examples of differential equations involve
quantities that change in time, the independent variable in our
discussion will frequently be time t. For instance, in the preview
activity, we considered the differential equation

ds
dt

= 4t + 1.

Knowing the velocity and the starting position of the object, we
were able to find the position at any later time.

Because differential equations describe the derivative of a func-
tion, they give us information about how that function changes.
Our goal will be to take this information and use it to predict
the value of the function in the future; in this way, differential
equations provide us with something like a crystal ball.

Differential equations arise frequently in our every day world.
For instance, you may hear a bank advertising:

Your money will grow at a 3% annual interest rate with us.

This innocuous statement is really a differential equation. Let’s
translate: A(t) will be amount of money you have in your ac-
count at time t. On one hand, the rate at which your money
grows is the derivative dA/dt. On the other hand, we are told
that this rate is 0.03A. This leads to the differential equation

dA
dt

= 0.03A.
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This differential equation has a slightly different feel than the
previous equation ds

dt = 4t + 1. In the earlier example, the rate
of change depends only on the independent variable t, and we
may find s(t) by integrating the velocity 4t + 1. In the banking
example, however, the rate of change depends on the dependent
variable A, so we’ll need some new techniques in order to find
A(t).

Activity 6.6–1

Express the following statements as differential equations. In each case,
you will need to introduce notation to describe the important quantities
in the statement so be sure to clearly state what your notation means.

(a) The population of a town grows at an annual rate of 1.25%.

(b) A radioactive sample loses 5.6% of its mass every day.

(c) You have a bank account that earns 4% interest every year. At the
same time, you withdraw money continually from the account at
the rate of $1000 per year.

(d) A cup of hot chocolate is sitting in a 70◦ room. The temperature
of the hot chocolate cools by 10% of the difference between the hot
chocolate’s temperature and the room temperature every minute.

(e) A can of cold soda is sitting in a 70◦ room. The temperature of the
soda warms at the rate of 10% of the difference between the soda’s
temperature and the room’s temperature every minute.

Differential equations may be classified based on certain char-
acteristics they may possess. Indeed, you may see many differ-
ent types of differential equations in a later course in differential
equations. For now, we would like to introduce a few terms that
are used to describe differential equations.

A first-order differential equation is one in which only the first
derivative of the function occurs. For this reason,

dv
dt

= 1.5− 0.5v

is a first-order equation while

d2y
dt2 = −10y

is a second-order equation.
A differential equation is autonomous if the independent vari-

able does not appear in the description of the derivative. For
instance,

dv
dt

= 1.5− 0.5v

is autonomous because the description of the derivative dv/dt
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does not depend on time. The equation

dy
dt

= 1.5t− 0.5y,

however, is not autonomous.

Differential equations in the world around us

As we have noted, differential equations give a natural way to
describe phenomena we see in the real world. For instance,
physical principles are frequently expressed as a description of
how a quantity changes. A good example is Newton’s Second
Law, an important physcial principle that says:

The product of an object’s mass and acceleration equals the force applied to it.

For instance, when gravity acts on an object near the earth’s
surface, it exerts a force equal to mg, the mass of the object times
the gravitational constant g. We therefore have

ma = mg, or
dv
dt

= g,

where v is the velocity of the object, and g = 9.8 meters per
second squared. Notice that this physical principle does not
tell us what the object’s velocity is, but rather how the object’s
velocity changes.

Activity 6.6–2

Shown are two graphs depicting the velocity of falling objects. One is
the velocity of a skydiver, while the other is the velocity of a meteorite
entering the Earth’s atmosphere.

(a) Begin with the skydiver’s velocity and use the given graph to mea-
sure the rate of change dv/dt when the velocity is v = 0.5, 1.0, 1.5, 2.0,
and 2.5. Plot your values on the graph below. You will want to think
carefully about this: you are plotting the derivative dv/dt as a func-
tion of velocity.
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(b) Now do the same thing with the meteorite’s velocity: use the given
graph to measure the rate of change dv/dt when the velocity is
v = 3.5, 4.0, 4.5, and 5.0. Plot your values on the graph above.

(c) You should find that all your points lie on a line. Write the equation
of this line being careful to use proper notation for the quantities on
the horizontal and vertical axes.

(d) The relationship you just found is a differential equation. Write a
complete sentence that explains its meaning.

(e) By looking at the differential equation, determine the values of the
velocity for which the velocity increases.

(f) By looking at the differential equation, determine the values of the
velocity for which the velocity decreases.

(g) By looking at the differential equation, determine the values of the
velocity for which the velocity remains constant.
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(a) Skydiver’s velocity

1 2 3

1

2

3

4

5

6

t

v

(b) Meteorite’s velocity

Figure 6.43: Graphs of velocities used in Activ-
ity 6.6–2.

The point of this activity is to demonstrate how differential
equations model processes in the real world. In this example,
two factors are influencing the velocities: gravity and wind re-
sistance. The differential equation describes how these factors
influence the rate of change of the objects’ velocities.

Solving a differential equation

We have said that a differential equation is an equation that de-
scribes the derivative, or derivatives, of a function that is un-
known to us. By a solution to a differential equation, we mean
simply a function that satisfies this description.

For instance, the first differential equation we looked at is

ds
dt

= 4t + 1,

which describes an unknown function s(t). We may check that
s(t) = 2t2 + t is a solution because it satisfies this description.
Notice that s(t) = 2t2 + t + 4 is also a solution.
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If we have a candidate for a solution, it is straightforward to
check whether it is a solution or not. Before we demonstrate,
however, let’s consider the same issue in a simpler context. Sup-
pose we are given the equation 2x2 − 2x = 2x + 6 and asked
whether x = 3 is a solution. To answer this question, we could
rewrite the variable x in the equation with the symbol �:

2�2 − 2� = 2�+ 6.

To determine whether x = 3 is a solution, we can investigate the
value of each side of the equation separately when the value 3 is
placed in � and see if indeed the two resulting values are equal.
Doing so, we observe that

2�2 − 2� = 2 · 32 − 2 · 3 = 12,

and
2�+ 6 = 2 · 3 + 6 = 12.

Therefore, x = 3 is indeed a solution.
We will do the same thing with differential equations. Con-

sider the differential equation

dv
dt

= 1.5− 0.5v, or

d�
dt

= 1.5− 0.5�.

Let’s ask whether v(t) = 3− 2e−0.5t is a solution4. Using this4 At this time, don’t worry about why we chose this
function; we will learn techniques for finding solu-
tions to differential equations soon enough.

formula for v, observe first that

dv
dt

=
d�
dt

=
d
dt
[3− 2e−0.5t] = −2e−0.5t · (−0.5) = e−0.5t

and

1.5− 0.5v = 1.5− 0.5� = 1.5− 0.5(3− 2e−0.5t) =

1.5− 1.5 + e−0.5t = e−0.5t.

Since dv
dt and 1.5− 0.5v agree for all values of t when v = 3−

2e−0.5t, we have indeed found a solution to the differential equa-
tion.

Activity 6.6–3

Consider the differential equation

dv
dt

= 1.5− 0.5v.

Which of the following functions are solutions of this differential equa-
tion?

(a) v(t) = 1.5t− 0.25t2.
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(b) v(t) = 3 + 2e−0.5t.

(c) v(t) = 3.

(d) v(t) = 3 + Ce−0.5t where C is any constant.

This activity shows us something interesting. Notice that the
differential equation has infinitely many solutions, which are
parameterized by the constant C in v(t) = 3 + Ce−0.5t. In Fig-
ure 6.44, we see the graphs of these solutions for a few values of
C, as labeled.
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Figure 6.44: The family of solutions to the differen-
tial equation dv

dt = 1.5− 0.5v.

Notice that the value of C is connected to the initial value
of the velocity v(0), since v(0) = 3 + C. In other words, while
the differential equation describes how the velocity changes as a
function of the velocity itself, this is not enough information to
determine the velocity uniquely: we also need to know the ini-
tial velocity. For this reason, differential equations will typically
have infinitely many solutions, one corresponding to each ini-
tial value. We have seen this phenomenon before, such as when
given the velocity of a moving object v(t), we were not able to
uniquely determine the object’s position unless we also know its
initial position.

If we are given a differential equation and an initial value
for the unknown function, we say that we have an initial value
problem. For instance,

dv
dt

= 1.5− 0.5v, v(0) = 0.5

is an initial value problem. In this situation, we know the value
of v at one time and we know how v is changing. Consequently,
there should be exactly one function v that satisfies the initial
value problem.

Slope Fields

We may sketch the solution to an initial value problem if we
know an appropriate collection of tangent lines. Because we
may use a given differential equation to determine the slope of
the tangent line at any point of interest, by plotting a useful
collection of these, we can get an accurate sense of how certain
solution curves must behave.

Let’s investigate the differential equation
dy
dt

= t− 2. If t = 0,
this equation says that dy/dt = 0 − 2 = −2. Note that this
value holds regardless of the value of y. We will therefore sketch
tangent lines for several values of y and t = 0 with a slope of
−2; see Figure 6.45.
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Figure 6.45: Beginnings of the slope field for
dy
dt

=

t− 2..
Let’s continue in the same way: if t = 1, the differential equa-

tion tells us that dy/dt = 1− 2 = −1, and this holds regardless
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of the value of y. We now sketch tangent lines for several values
of y and t = 1 with a slope of −1; see Figure 6.45-(a).

Similarly, we see that when t = 2, dy/dt = 0 and when t = 3,
dy/dt = 1. We may therefore add to our growing collection of
tangent line plots; see Figure 6.45-(b). In this figure, you may
see the solutions to the differential equation emerge. However,
for the sake of clarity, we will add more tangent lines to provide
the more complete picture shown in Figure 6.46-(c).
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Figure 6.46: Generating the slope field for
dy
dt

=

t− 2.. Figure 6.46-(c) is called a slope field for the differential equa-
tion, allows us to sketch solutions of the differential equation.
Here, we will begin with the initial value y(0) = 1 and start
sketching the solution by following the tangent line, as shown
in Figure 6.47.

We then continue using this principle: whenever the solution
passes through a point at which a tangent line is drawn, that
line is tangent to the solution. Doing so leads us to the following
sequence of images.
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Figure 6.47: Sketching a solution curve for
dy
dt

=

t− 2.. In fact, we may draw solutions for any possible initial value,
and doing this for several different initial values for y(0) results
in the graphs shown in Figure 6.48.
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Just as we have done for the most recent example with dy
dt =

t− 2, we can construct a slope field for any differential equation
of interest. The slope field provides us with visual information
about how we expect solutions to the differential equation to
behave.
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Figure 6.48: Several solution curves for
dy
dt

= t− 2..

Activity 6.6–4

Consider the autonomous differential equation

dy
dt

= −1
2
(y− 4).

(a) Make a plot of dy
dt versus y on the axes provided. Looking at the

graph, for what values of y does y increase and for what values of
y does y decrease?
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(b) Next, sketch the slope field for this differential equation on the axes
provided.
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(c) Use your work in (b) to sketch the solutions that satisfy y(0) = 0,
y(0) = 2, y(0) = 4 and y(0) = 6.

(d) Verify that y(t) = 4 + 2e−t/2 is a solution to the given differential
equation with the initial value y(0) = 6. Compare its graph to the
one you sketched in (c).

(e) What is special about the solution where y(0) = 4?
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Equilibrium solutions and stability

As our work in Activity 6.6–4 demonstrates, first-order autonomous
solutions may have solutions that are constant. In fact, these
are quite easy to detect by inspecting the differential equation
dy/dt = f (y): constant solutions necessarily have a zero deriva-
tive so dy/dt = 0 = f (y).

For example, in Activity 6.6–4, we considered the equation

dy
dt

= f (y) = −1
2
(y− 4).

Constant solutions are found by setting f (y) = − 1
2 (y− 4) = 0,

which we immediately see implies that y = 4.
Values of y for which f (y) = 0 in an autonomous differential

equation dy
dt = f (y) are usually called or equilibrium solutions of

the differential equation.
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Activity 6.6–5

Consider the autonomous differential equation

dy
dt

= −1
2

y(y− 4).

(a) Make a plot of dy
dt versus y. Looking at the graph, for what values

of y does y increase and for what values of y does y decrease?

(b) Identify any equilibrium solutions of the given differential equation.

(c) Now sketch the slope field for the given differential equation.

(d) Sketch the solutions to the given differential equation that corre-
spond to initial values y(0) = −1, 0, 1, . . . , 5.

(e) An equilibrium solution y is called stable if nearby solutions con-
verge to y. This means that if the inital condition varies slightly
from y, then limt→∞ y(t) = y.

Conversely, an equilibrium solution y is called unstable if nearby
solutions are pushed away from y.

Using your work above, classify the equilibrium solutions you found
in (b) as either stable or unstable.

(f) Suppose that y(t) describes the population of a species of living
organisms and that the initial value y(0) is positive. What can you
say about the eventual fate of this population?

(g) Remember that an equilibrium solution y satisfies f (y) = 0. If we
graph dy/dt = f (y) as a function of y, for which of the following
differential equations is y a stable equilibrium and for which is y
unstable? Why?
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y

y

dy
dt

= f(y)

y

y

dy
dt

= f(y)

Summary

In this section, we encountered the following important ideas:

• A differential equation is simply an equation that describes the derivative(s) of an unknown function.

• Physical principles, as well as some everyday situations, often describe how a quantity changes, which
lead to differential equations.

• A solution to a differential equation is a function whose derivatives satisfy the equation’s description.
Differential equations typically have infinitely many solutions, parameterized by the initial values.

• A slope field is a plot created by graphing the tangent lines of many different solutions to a differential
equation.

• Once we have a slope field, we may sketch the graph of solutions by drawing a curve that is always
tangent to the lines in the slope field.

• Autonomous differential equations sometimes have constant solutions that we call equilibrium solutions.
These may be classified as stable or unstable, depending on the behavior of nearby solutions.
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Exercises

Problems

1) Suppose that T(t) represents the temperature of a cup
of coffee set out in a room, where T is expressed in
degrees Fahrenheit and t in minutes. A physical prin-
ciple known as Newton’s Law of Cooling tells us that

dT
dt

= − 1
15

T + 5.

(a) Supposes that T(0) = 105. What does the differ-

ential equation give us for the value of
dT
dt
|T=0?

Explain in a complete sentence the meaning of
these two facts.

(b) Is T increasing or decreasing at t = 0?

(c) What is the approximate temperature at t = 1?

(d) On the graph below, make a plot of dT/dt as a
function of T.
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(e) For which values of T does T increase? For
which values of T does T decrease?

(f) What do you think is the temperature of the
room? Explain your thinking.

(g) Verify that T(t) = 75 + 30e−t/15 is the solu-
tion to the differential equation with initial value
T(0) = 105. What happens to this solution after
a long time?

2) Suppose that the population of a particular species is
described by the function P(t), where P is expressed
in millions. Suppose further that the population’s
rate of change is governed by the differential equa-
tion

dP
dt

= f (P)

where f (P) is the function graphed below.

1 2 3 4

P

dP

dt

(a) For which values of the population P does the
population increase?

(b) For which values of the population P does the
population decrease?

(c) If P(0) = 3, how will the population change in
time?

(d) If the initial population satisfies 0 < P(0) < 1,
what will happen to the population after a very
long time?

(e) If the initial population satisfies 1 < P(0) < 3,
what will happen to the population after a very
long time?

(f) If the initial population satisfies 3 < P(0), what
will happen to the population after a very long
time?

(g) This model for a population’s growth is some-
times called “growth with a threshold.” Explain
why this is an appropriate name.

3) In this problem, we test further what it means for a
function to be a solution to a given differential equa-
tion.

(a) Consider the differential equation

dy
dt

= y− t.

Determine whether the following functions are
solutions to the given differential equation.

(i) y(t) = t + 1 + 2et

(ii) y(t) = t + 1

(iii) y(t) = t + 2

(b) When you weigh bananas in a scale at the gro-
cery store, the height h of the bananas is de-
scribed by the differential equation

d2h
dt2 = −kh

where k is the spring constant, a constant that
depends on the properties of the spring in the
scale. After you put the bananas in the scale,
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you (cleverly) observe that the height of the ba-
nanas is given by h(t) = 4 sin(3t). What is the
value of the spring constant?
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6.7 Separable differential equations

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What is a separable differential equation?

• How can we find solutions to a separable differential equation?

• Are some of the differential equations that arise in applications separable?

• How can we use differential equations to describe and understand phenomena in the world around us?

Introduction

Given the frequency with which differential equations arise in
the world around us, we would like to have some techniques for
finding explicit algebraic solutions of certain initial value prob-
lems. In this section, we focus on a particular class of differential
equations (called separable) and develop a method for finding al-
gebraic formulas for solutions to these equations.

A separable differential equation is a differential equation whose
algebraic structure permits the variables present to be separated
in a particular way. For instance, consider the equation

dy
dt

= ty.

We would like to separate the variables t and y so that all occur-
rences of t appear on the right-hand side, and all occurrences of
y appears on the left and multiply dy/dt. We may do this in the
preceding differential equation by dividing both sides by y:

1
y

dy
dt

= t.

Note particularly that when we attempt to separate the variables
in a differential equation, we require that the left-hand side be a
product in which the derivative dy/dt is one term.

Not every differential equation is separable. For example, if
we consider the equation

dy
dt

= t− y,

it may seem natural to separate it by writing

y +
dy
dt

= t.

As we will see, this will not be helpful since the left-hand side
is not a product of a function of y with dy

dt .
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Preview Activity 6.7

In this preview activity, we explore whether certain differential equations
are separable or not, and then revisit some key ideas from earlier work
in integral calculus.

(a) Which of the following differential equations are separable? If the
equation is separable, write the equation in the revised form g(y) dy

dt =

h(t).

(a)
dy
dt

= −3y.

(b)
dy
dt

= ty− y.

(c)
dy
dt

= t + 1.

(d)
dy
dt

= t2 − y2.

(b) Explain why any autonomous differential equation is guaranteed to
be separable.

(c) Why do we include the term “+C” in the expression

∫
x dx =

x2

2
+ C?

(d) Suppose we know that a certain function f satisfies the equation
∫

f ′(x) dx =
∫

x dx.

What can you conclude about f ?

Solving separable differential equations

Before we discuss a general approach to solving a separable dif-
ferential equation, it is instructive to consider an example.

Example 1

Find all functions y that are solutions to the differential equation

dy
dt

=
t

y2 .

Solution. We begin by separating the variables and writing

y2 dy
dt

= t.

Integrating both sides of the equation with respect to the independent
variable t shows that ∫

y2 dy
dt

dt =
∫

t dt.

Next, we notice that the left-hand side allows us to change the variable
of antidifferentiation from t to y. In particular, dy =

dy
dt dt, so we now
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have ∫
y2 dy =

∫
t dt.

This is why we required that the left-hand side be written as a prod-
uct in which dy/dt is one of the terms. This most recent equation says
that two families of antiderivatives are equal to one another. Therefore,
when we find representative antiderivatives of both sides, we know they
must differ by arbitrary constant C. Antidifferentiating and including the
integration constant C on the right, we find that

y3

3
=

t2

2
+ C.

Again, note that it is not necessary to include an arbitrary constant on
both sides of the equation; we know that y3/3 and t2/2 are in the same
family of antiderivatives and must therefore differ by a single constant.

Finally, we may now solve the last equation above for y as a function
of t, which gives

y(t) = 3

√
3
2

t2 + 3C.

Of course, the term 3C on the right-hand side represents 3 times an un-
known constant. It is, therefore, still an unknown constant, which we
will rewrite as C. We thus conclude that the funtion

y(t) = 3

√
3
2

t2 + C

is a solution to the original differential equation for any value of C.
Notice that because this solution depends on the arbitrary constant C,

we have found an infinite family of solutions. This makes sense because
we expect to find a unique solution that corresponds to any given initial
value.

For example, if we want to solve the initial value problem

dy
dt

=
t

y2 , y(0) = 2,

we know that the solution has the form y(t) = 3
√

3
2 t2 + C for some con-

stant C. We therefore must find the appropriate value for C that gives
the initial value y(0) = 2. Hence,

2 = y(0) 3

√
3
2

02 + C =
3
√

C,

which shows that C = 23 = 8. The solution to the initial value problem
is then

y(t) = 3

√
3
2

t2 + 8.

The strategy of Example 1 may be applied to any differen-
tial equation of the form dy

dt = g(y) · h(t), and any differential
equation of this form is said to be separable. We work to solve a
separable differential equation by writing

1
g(y)

dy
dt

= h(t),
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and then integrating both sides with respect to t. After integrat-
ing, we strive to solve algebraically for y in order to write y as a
function of t.

We consider one more example before doing further explo-
ration in some activities.

Example 2

Solve the differential equation

dy
dt

= 3y.

Solution. Following the same strategy as in Example 1, we have

1
y

dy
dt

= 3.

Integrating both sides with respect to t,
∫ 1

y
dy
dt

dt =
∫

3 dt,

and thus ∫ 1
y

dy =
∫

3 dt.

Antidifferentiating and including the integration constant, we find that

ln |y| = 3t + C.

Finally, we need to solve for y. Here, one point deserves careful attention.
By the definition of the natural logarithm function, it follows that

|y| = e3t+C = e3teC.

Since C is an unknown constant, eC is as well, though we do know that
it is positive (because ex is positive for any x). When we remove the
absolute value in order to solve for y, however, this constant may be
either positive or negative. We will denote this updated constant (that
accounts for a possible + or −) by C to obtain

y(t) = Ce3t.

There is one more slightly technical point to make. Notice that y = 0 is
an equilibrium solution to this differential equation. In solving the equa-
tion above, we begin by dividing both sides by y, which is not allowed
if y = 0. To be perfectly careful, therefore, we will typically consider the
equilibrium solutions separably. In this case, notice that the final form of
our solution captures the equilibrium solution by allowing C = 0.

Activity 6.7–1

Suppose that the population of a town is increases by 3% every year.

(a) Let P(t) be the population of the town in year t. Write a differential
equation that describes the annual growth rate.
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(b) Find the solutions of this differential equation.

(c) If you know that the town’s population in year 0 is 10, 000, find the
population P(t).

(d) How long does it take for the population to double? This time is
called the doubling time.

(e) Working more generally, find the doubling time if the annual growth
rate is k times the population.

Activity 6.7–2

Suppose that a cup of coffee is initially at a temperature of 105◦ F and is
placed in a 75◦ F room. Newton’s law of cooling says that

dT
dt

= −k(T − 75),

where k is a constant of proportionality.

(a) Suppose you measure that the coffee is cooling at one degree per
minute at the time the coffee is brought into the room. Use the
differential equation to determine the value of the constant k.

(b) Find all the solutions of this differential equation.

(c) What happens to all the solutions as t → ∞? Explain how this
agrees with your intuition.

(d) What is the temperature of the cup of coffee after 20 minutes?

(e) How long does it take for the coffee to cool to 80◦?

Activity 6.7–3

Solve each of the following differential equations or initial value prob-
lems.

(a)
dy
dt
− (2− t)y = 2− t

(b)
1
t

dy
dt

= et2−2y

(c) y′ = 2y + 2, y(0) = 2

(d) y′ = 2y2, y(−1) = 2

(e)
dy
dt

=
−2ty
t2 + 1

, y(0) = 4

Developing a differential equation

In our work to date, we have seen several ways that differential
equations arise in the natural world, from the growth of a pop-
ulation to the temperature of a cup of coffee. Now, we will look
more closely at how differential equations give us a natural way
to describe various phenoma. As we’ll see, the key is to focus
on understanding the different factors that cause a quantity to
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change.

Activity 6.7–4

Any time that the rate of change of a quantity is related to the amount
of a quantity, a differential equation naturally arises. In the following
two problems, we see two such scenarios; for each, we want to develop a
differential equation whose solution is the quantity of interest.

(a) Suppose you have a bank account in which money grows at an an-
nual rate of 3%.

(i) If you have $10, 000 in the account, at what rate is your money
growing?

(ii) Suppose that you are also withdrawing money from the account
at $1, 000 per year. What is the rate of change in the amount of
money in the account? What are the units on this rate of change?

(b) Suppose that a water tank holds 100 gallons and that a salty solu-
tion, which contains 20 grams of salt in every gallon, enters the tank
at 2 gallons per minute.

(i) How much salt enters the tank each minute?

(ii) Suppose that initially there are 300 grams of salt in the tank. How
much salt is in each gallon at this point in time?

(iii) Finally, suppose that evenly mixed solution is pumped out of the
tank at the rate of 2 gallons per minute. How much salt leaves
the tank each minute?

(iv) What is the total rate of change in the amount of salt in the tank?

Activity 6.7–4 demonstrates the kind of thinking we will be
doing. In each of the two examples we considered, there is a
quantity, such as the amount of money in the bank account or
the amount of salt in the tank, that is changing due to several
factors. The governing differential equation results from the to-
tal rate of change being the difference between the rate of in-
crease and the rate of decrease.

P

dP/dt

1.5 · 105

Figure 6.49: Plot of dP
dt vs. P.

Example 3

In the Great Lakes region, rivers flowing into the lakes carry a great deal
of pollution in the form of small pieces of plastic averaging 1 millimeter
in diameter. In order to understand how the amount of plastic in Lake
Michigan is changing, construct a model for how this type pollution has
built up in the lake.

Solution. First, some basic facts about Lake Michigan.

• The volume of the lake is 5 · 1012 cubic meters.

• Water flows into the lake at a rate of 5 · 1010 cubic meters per year. It
flows out of the lake at the same rate.

• Each cubic meter flowing into the lake contains roughly 3 · 10−8 cubic
meters of plastic pollution.
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Let’s denote the amount of pollution in the lake by P(t), where P is
measured in cubic meters of plastic and t in years. Our goal is to describe
the rate of change of this function; in other words, we want to develop a
differential equation describing P(t).

First, we will measure how P(t) increases due to pollution flowing
into the lake. We know that 5 · 1010 cubic meters of water enters the lake
every year and each cubic meter of water contains 3 · 10−8 cubic meters
of pollution. Therefore, pollution enters the lake at the rate of

(
5 · 1010 m3 water

year

)
·
(

3 · 10−8 m3 plastic
m3 water

)
= 1.5 · 103

cubic meters of plastic per year.
Second, we will measure how P(t) decreases due to pollution flowing

out of the lake. If the total amount of pollution is P cubic meters and the
volume of Lake Michigan is 5 · 1012 cubic meters, then the concentration
of plastic pollution in Lake Michigan is

P
5 · 1012 cubic meters of plastic per cubic meter of water.

Since 5 · 1010 cubic meters of water flow out each year,and we assume
that each cubic meter of water that flows out carries with it the plastic
pollution it contains, then the plastic pollution leaves the lake at the rate
of (

P
5 · 1012

m3 plastic
m3 water

)
·
(

5 · 1010 m3 water
year

)
=

P
100

cubic meters of plastic per year.
The total rate of change of P is thus the difference between the rate at

which pollution enters the lake minus the rate at which pollution leaves
the lake; that is,

dP
dt

= 1.5 · 103 − P
100

=
1

100
(1.5 · 105 − P).

We have now found a differential equation that describes the rate at
which the amount of pollution is changing. To better understand the
behavior of P(t), we now apply some of the techniques we have recently
developed.

Since this is an autonomous differential equation, we can sketch dP/dt
as a function of P and then construct a slope field, as shown in Figure 6.49

and Figure 6.50.
These plots both show that P = 1.5 · 105 is a stable equilibrium. There-

fore, we should expect that the amount of pollution in Lake Michigan
will stabilize near 1.5 · 105 cubic meters of pollution.

Next, assuming that there is initially no pollution in the lake, we will
solve the initial value problem

dP
dt

=
1

100
(1.5 · 105 − P), P(0) = 0.

Separating variables, we find that

1
1.5 · 105 − P

dP
dt

=
1

100
.
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Integrating with respect to t, we have
∫ 1

1.5 · 105 − P
dP
dt

dt =
∫ 1

100
dt,

and thus changing variables on the left and antidifferentiating on both
sides, we find that

∫ dP
1.5 · 105 − P

=
∫ 1

100
dt

− ln |1.5 · 105 − P| =
1

100
t + C

Finally, multiplying both sides by −1 and using the definition of the
logarithm, we find that

1.5 · 105 − P = Ce−t/100. (6.2)

This is a good time to determine the constant C. Since P = 0 when t = 0,
we have

1.5 · 105 − 0 = Ce0 = C.

In other words, C = 1.5 · 105.
Using this value of C in Equation (6.2) and solving for P, we arrive at

the solution
P(t) = 1.5 · 105(1− e−t/100).

Superimposing the graph of P on the slope field we saw in Figure 6.49

and Figure 6.50, we see, as shown in Figure 6.51.
We see that, as expected, the amount of plastic pollution stabilizes

around 1.5 · 105 cubic meters.

t

P

Figure 6.50: The slope field for the differential
equation dP

dt = 1
100 (1.5 · 105 − P).

t

P

Figure 6.51: The solution P(t) and the slope field
for the differential equation dP

dt = 1
100 (1.5 · 105− P).

There are many important lessons to learn from Example 3.
Foremost is how we can develop a differential equation by think-
ing about the “total rate = rate in - rate out” model. In addition,
we note how we can bring together all of our available under-
standing (plotting dP

dt vs. P, creating a slope field, solving the
differential equation) to see how the differential equation de-
scribes the behavior of a changing quantity.

Of course, we can also explore what happens when certain
aspects of the problem change. For instance, let’s suppose we
are at a time when the plastic pollution entering Lake Michigan
has stabilized at 1.5 · 105 cubic meters, and that new legislation
is passed to prevent this type of pollution entering the lake. So,
there is no longer any inflow of plastic pollution to the lake.
How does the amount of plastic pollution in Lake Michigan now
change? For example, how long does it take for the amount of
plastic pollution in the lake to halve?

Restarting the problem at time t = 0, we now have the modi-
fied initial value problem

dP
dt

= − 1
100

P, P(0) = 1.5 · 105.

It is a straightforward and familiar exercise to find that the so-
lution to this equation is P(t) = 1.5 · 105e−t/100. The time that it
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takes for half of the pollution to flow out of the lake is given by
T where P(T) = 0.75 · 105. Thus, we must solve the equation

0.75 · 105 = 1.5 · 105e−T/100,

or
1
2
= e−T/100.

It follows that

T = −100 ln
(

1
2

)
≈ 69.3 years.

In the activities that follow, we explore some other natural
settings in which differential equation model changing quanti-
ties.

Activity 6.7–5

Suppose you have a bank account that grows by 5% every year.

(a) Let A(t) be the amount of money in the account in year t. What is
the rate of change of A?

(b) Suppose that you are also withdrawing $10, 000 per year. Write a
differential equation that expresses the total rate of change of A.

(c) Sketch a slope field for this differential equation, find any equilib-
rium solutions, and identify them as either stable or unstable. Write
a sentence or two that describes the significance of the stability of
the equilibrium solution.

(d) Suppose that you initially deposit $100, 000 into the account. How
long does it take for you to deplete the account?

(e) What is the smallest amount of money you would need to have in
the account to guarantee that you never deplete the money in the
account?

(f) If your initial deposit is $300, 000, how much could you withdraw
every year without depleting the account?

Activity 6.7–6

A dose of morphine is absorbed from the bloodstream of a patient at a
rate proportional to the amount in the bloodstream.

(a) Write a differential equation for M(t), the amount of morphine in
the patient’s bloodstream, using k as the constant proportionality.

(b) Assuming that the initial dose of morphine is M0, solve the initial
value problem to find M(t). Use the fact that the half-life for the
absorption of morphine is two hours to find the constant k.

(c) Suppose that a patient is given morphine intraveneously at the rate
of 3 milligrams per hour. Write a differential equation that com-
bines the intraveneous administration of morphine with the body’s
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natural absorption.

(d) Find any equilibrium solutions and determine their stability.

(e) Assuming that there is initially no morphine in the patient’s blood-
stream, solve the initial value problem to determine M(t).

(f) What happens to M(t) after a very long time?

(g) Suppose that a doctor asks you to reduce the intraveneous rate so
that there is eventually 7 milligrams of morphine in the patient’s
bloodstream. To what rate would you reduce the intraveneous flow?

Population Growth

We will now begin studying the earth’s population. To get
started, some data for the earth’s population in recent years that
we will use in our investigations is given in Table 6.3.

Year Population
1998 5.932
1999 6.008
2000 6.084
2001 6.159
2002 6.234
2005 6.456
2006 6.531
2007 6.606
2008 6.681
2009 6.756
2010 6.831

Table 6.3: The earth’s recent population (in bil-
lions).

Activity 6.7–7

Our first model will be based on the following assumption:

The rate of change of the population is proportional to the population.

On the face of it, this seems pretty reasonable. When there is a rela-
tively small number of people, there will be fewer births and deaths so
the rate of change will be small. When there is a larger number of people,
there will be more births and deaths so we expect a larger rate of change.

If P(t) is the population t years after the year 2000, we may express
this assumption as

dP
dt

= kP

where k is a constant of proportionality.

(a) Use the data in the table to estimate the derivative P′(0) using a
central difference. Assume that t = 0 corresponds to the year 2000.

(b) What is the population P(0)?

(c) Use these two facts to estimate the constant of proportionality k in
the differential equation.

(d) Now that we know the value of k, we have the initial value problem

dP
dt

= kP, P(0) = 6.084.

Find the solution to this initial value problem.

(e) What does your solution predict for the population in the year 2010?
Is this close to the actual population given in the table?

(f) When does your solution predict that the population will reach 12
billion?

(g) What does your solution predict for the population in the year 2500?

(h) Do you think this is a reasonable model for the earth’s population?
Why or why not? Explain your thinking using a couple of complete
sentences.
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Our work in Activity 6.7–7 shows that that the exponential
model is fairly accurate for years relatively close to 2000. How-
ever, if we go too far into the future, the model predicts increas-
ingly large rates of change, which causes the population to grow
arbitrarily large. This does not make much sense since it is un-
realistic to expect that the earth would be able to support such
a large population.

The constant k in the differential equation has an important
interpretation. Let’s rewrite the differential equation dP

dt = kP
by solving for k, so that we have

k =
dP/dt

P
.

Viewed in this light, k is the ratio of the rate of change to the
population; in other words, it is the contribution to the rate of
change from a single person. We call this the per capita growth
rate.

In the exponential model we introduced in Activity 6.7–7, the
per capita growth rate is constant. In particular, we are assum-
ing that when the population is large, the per capita growth
rate is the same as when the population is small. It is natural
to think that the per capita growth rate should decrease when
the population becomes large, since there will not be enough
resources to support so many people. In other words, we expect
that a more realistic model would hold if we assume that the
per capita growth rate depends on the population P.

In the previous activity, we computed the per capita growth
rate in a single year by computing k, the quotient of dP

dt and P
(which we did for t = 0). If we return data and compute the
per capita growth rate over a range of years, we generate the
data shown in Figure 6.52-(a), which shows how the per capita
growth rate is a function of the population, P.

From the data, we see that the per capita growth rate appears
to decrease as the population increases. In fact, the points seem
to lie very close to a line, which is shown at two different scales
in Figure 6.52-(b) and Figure 6.52-(c).

6.0 6.2 6.4 6.6 6.8 7.0
0.010

0.011

0.012

0.013

0.014

0.015
per capita growth rate

(a)

6.0 6.2 6.4 6.6 6.8 7.0
0.010

0.011

0.012

0.013

0.014

0.015
per capita growth rate

(b)

2 4 6 8 10 12 14 16 18 20

-0.01

0.01

0.02

0.03

P

per capita growth rate

(c)

Figure 6.52: The data and approximations of the
per capita growth as a function of population, P.

Looking at this line carefully, we can find its equation to be

dP/dt
P

= 0.025− 0.002P.

If we multiply both sides by P, we arrive at the differential equa-
tion

dP
dt

= P(0.025− 0.002P).

Graphing the dependence of dP/dt on the population P, we see
that this differential equation demonstrates a quadratic relation-
ship between dP

dt and P, as shown in Figure 6.53.
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The equation dP
dt = P(0.025 − 0.002P) is an example of the

logistic equation, and is the second model for population growth
that we will consider. We have reason to believe that it will be
more realistic since the per capita growth rate is a decreasing
function of the population.

Indeed, the graph in Figure 6.53 shows that there are two
equilibrium solutions, P = 0, which is unstable, and P = 12.5,
which is a stable equilibrium. The graph shows that any so-
lution with P(0) > 0 will eventually stabilize around 12.5. In
other words, our model predicts the the world’s population will
eventually stabilize around 12.5 billion.

2 4 6 8 10 12 14 16 18 20

-0.10

-0.05

0.05

0.10

P

dP
dt

Figure 6.53: A plot of dP
dt vs. P for the differential

equation dP
dt = P(0.025− 0.002P).

A prediction for the long-term behavior of the population is
a valuable conclusion to draw from our differential equation.
We would, however, like to answer some quantitative questions.
For instance, how long will it take to reach a population of 10
billion? To determine this, we need to find an explicit solution
of the equation.

Solving the logistic differential equation

Since we would like to apply the logistic model in more gen-
eral situations, we state the logistic equation in its more general
form,

dP
dt

= kP(N − P). (6.3)

The equilibrium solutions here are when P = 0 and 1− P
N = 0,

which shows that P = N. The equilibrium at P = N is called
the carrying capacity of the population for it represents the stable
population that can be sustained by the environment.

We now solve the logistic equation (6.3). The equation is sep-
arable, so we separate the variables

1
P(N − P)

dP
dt

= k,

and integrate to find that
∫ 1

P(N − P)
dP =

∫
k dt.

To find the antiderivative on the left, we use the partial frac-
tion decomposition

1
P(N − P)

=
1
N

[
1
P
+

1
N − P

]
.

Now we are ready to integrate, with
∫ 1

N

[
1
P
+

1
N − P

]
dP =

∫
k dt.
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On the left, observe that N is constant, so we can remove the
factor of 1

N and antidifferentiate to find that

1
N
(ln |P| − ln |N − P|) = kt + C.

Multiplying both sides of this last equation by N and using an
important rule of logarithms, we next find that

ln
∣∣∣∣

P
N − P

∣∣∣∣ = kNt + C.

From the definition of the logarithm, replacing eC with C, and
letting C absorb the absolute value signs, we now know that

P
N − P

= CekNt.

At this point, all that remains is to determine C and solve alge-
braically for P.

If the initial population is P(0) = P0, then it follows that C =
P0

N−P0
, so

P
N − P

=
P0

N − P0
ekNt.

We will solve this most recent equation for P by multiplying
both sides by (N − P)(N − P0) to obtain

P(N − P0) = P0(N − P)ekNt

= P0NekNt − P0PekNt.

Swapping the left and right sides, expanding, and factoring, it
follows that

P0NekNt = P(N − P0) + P0PekNt

= P(N − P0 + P0ekNt).

Dividing to solve for P, we see that

P =
P0NekNt

N − P0 + P0ekNt .

Finally, we choose to multiply the numerator and denominator
by 1

P0
e−kNt to obtain

P(t) =
N(

N−P0
P0

)
e−kNt + 1

.
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While that was a lot of algebra, notice the result: we have
found an explicit solution to the initial value problem

dP
dt

= kP(N − P), P(0) = P0,

and that solution is

P(t) =
N(

N−P0
P0

)
e−kNt + 1

. (6.4)

For the logistic equation describing the earth’s population
that we worked with earlier in this section, we have

k = 0.002, N = 12.5, and P0 = 6.084.

This gives the solution

P(t) =
12.5

1.0546e−0.025t + 1
,

whose graph is shown in Figure 6.54

40 80 120 160 200

3

6

9

12

15

t

P

Figure 6.54: The solution to the logistic equation
modeling the earth’s population.

Notice that the graph shows the population leveling off at 12.5
billion, as we expected, and that the population will be around
10 billion in the year 2050. These results, which we have found
using a relatively simple mathematical model, agree fairly well
with predictions made using a much more sophisticated model
developed by the United Nations.

The logistic equation is useful in other situations, too, as it
is good for modeling any situation in which limited growth is
possible. For instance, it could model the spread of a flu virus
through a population contained on a cruise ship, the rate at
which a rumor spreads within a small town, or the behavior
of an animal population on an island. Again, it is important
to realize that through our work in this section, we have com-
pletely solved the logistic equation, regardless of the values of
the constants N, k, and P0. Anytime we encounter a logistic
equation, we can apply the formula we found in Equation (6.4).

Activity 6.7–8

Consider the logistic equation

dP
dt

= kP(N − P)

with the graph of dP
dt vs. P shown below.
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P

dP
dt

N

N/2

(a) At what value of P is the rate of change greatest?

(b) Consider the model for the earth’s population that we created. At
what value of P is the rate of change greatest? How does that com-
pare to the population in recent years?

(c) According to the model we developed, what will the population be
in the year 2100?

(d) According to the model we developed, when will the population
reach 9 billion?

(e) Now consider the general solution to the general logistic initial
value problem that we found, given by

P(t) =
N(

N−P0
P0

)
e−kNt + 1

.

Verify algebraically that P(0) = P0 and that limt→∞ P(t) = N.

Summary

In this section, we encountered the following important ideas:

• A separable differential equation is one that may be rewritten with all occurrences of the dependent
variable multiplying the derivative and all occurrences of the independent variable on the other side of
the equation.

• We may find the solutions to certain separable differential equations by separating variables, integrating
with respect to t, and ultimately solving the resulting algebraic equation for y.

• This technique allows us to solve many important differential equations that arise in the world around
us. For instance, questions of growth and decay and Newton’s Law of Cooling give rise to separable
differential equations.

• If we assume that the rate of growth of a population is proportional to the population, we are led to a
model in which the population grows without bound and at a rate that grows without bound.

• By assuming that the per capita growth rate decreases as the population grows, we are led to the logistic
model of population growth, which predicts that the population will eventually stabilize at the carrying
capacity.
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Exercises

Problems

1) The mass of a radioactive sample decays at a rate that
is proportional to its mass.

(a) Express this fact as a differential equation for the
mass M(t) using k for the constant of propor-
tionality.

(b) If the initial mass is M0, find an expression for
the mass M(t).

(c) The half-life of the sample is the amount of time
required for half of the mass to decay. Knowing
that the half-life of Carbon-14 is 5730 years, find
the value of k for a sample of Carbon-14.

(d) How long does it take for a sample of Carbon-14

to be reduced to one-quarter its original mass?

(e) Carbon-14 naturally occurs in our environment;
any living organism takes in Carbon-14 when it
eats and breathes. Upon dying, however, the or-
ganism no longer takes in Carbon-14.
Suppose that you find remnants of a pre-historic
firepit. By analyzing the charred wood in the pit,
you determine that the amount of Carbon-14 is
only 30% of the amount in living trees. Estimate
the age of the firepit. Note this approach is the
basic idea behind radiocarbon dating.

2) Consider the initial value problem

dy
dt

= − t
y

, y(0) = 8

(a) Find the solution of the initial value problem
and sketch its graph.

(b) For what values of t is the solution defined?

(c) What is the value of y at the last time that the
solution is defined?

(d) By looking at the differential equation, explain
why we should not expect to find solutions with
the value of y you noted in (c).

3) Suppose that a cylindrical water tank with a hole in
the bottom is filled with water. The water, of course,
will leak out and the height of the water will de-
crease. Let h(t) denote the height of the water. A
physical principle called Torricelli’s Law implies that
the height decreases at a rate proportional to the
square root of the height.

(a) Express this fact using k as the constant of pro-
portionality.

(b) Suppose you have two tanks, one with k = 1 and
another with k = 10. What physical differences
would you expect to find?

(c) Suppose you have a tank for which the height
decreases at 20 inches per minute when the wa-
ter is filled to a depth of 100 inches. Find the
value of k.

(d) Solve the initial value problem for the tank in
part (c), and graph the solution you determine.

(e) How long does it take for the water to run out
of the tank?

(f) Is the solution that you found valid for all time
t? If so, explain how you know this. If not, ex-
plain why not.

4) The Gompertz equation is a model that is used to de-
scribe the growth of certain populations. Suppose
that P(t) is the population of some organism and that

dP
dt

= −P ln
(

P
3

)
= −P(ln P− ln 3).

(a) Sketch a slope field for P(t) over the range 0 ≤
P ≤ 6.

(b) Identify any equilibrium solutions and deter-
mine whether they are stable or unstable.

(c) Find the population P(t) assuming that P(0) = 1
and sketch its graph. What happens to P(t) after
a very long time?

(d) Find the population P(t) assuming that P(0) = 6
and sketch its graph. What happens to P(t) after
a very long time?

(e) Verify that the long-term behavior of your solu-
tions agrees with what you predicted by looking
at the slope field.
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6.8 Hyperbolic Functions

Motivating Questions

In this section, we strive to understand the ideas generated by the following important questions:

• What are hyperbolic functions?

• What properties do hyperbolic functions possess?

Introduction

The hyperbolic functions are a set of functions that have many
applications to mathematics, physics, and engineering. Among
many other applications, they are used to describe the formation
of satellite rings around planets, to describe the shape of a rope
hanging from two points, and have application to the theory of
special relativity. This section defines the hyperbolic functions
and describes many of their properties, especially their useful-
ness to calculus.

Hyperbolic Functions

These functions are sometimes referred to as the “hyperbolic
trigonometric functions” as there are many, many connections
between them and the standard trigonometric functions. Fig-
ure 6.55 demonstrates one such connection. Just as cosine and
sine are used to define points on the circle defined by x2 + y2 =
1, the functions hyperbolic cosine and hyperbolic sine are used
to define points on the hyperbola x2 − y2 = 1.
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Figure 6.55: Using trigonometric functions to de-
fine points on a circle and hyperbolic functions
to define points on a hyperbola. The area of the
shaded regions are included in them.

Hyperbolic Functions

1) sinh(x) =
ex − e−x

2

2) cosh(x) =
ex + e−x

2

3) tanh(x) =
sinh(x)
cosh(x)

4) csch(x) =
1

sinh(x)

5) sech(x) =
1

cosh(x)

6) coth(x) =
cosh(x)
sinh(x)

These hyperbolic functions are graphed in Figure 6.56. In
the graphs of cosh(x) and sinh(x), graphs of ex/2 and e−x/2
are included with dashed lines. As x gets “large,” cosh(x) and
sinh(x) each act like ex/2; when x is a large negative number,
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cosh(x) acts like e−x/2 whereas sinh(x) acts like −e−x/2.Pronunciation Note:
“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch.”

Notice the domains of tanh(x) and sech(x) are (−∞, ∞), whereas
both coth(x) and csch(x) have vertical asymptotes at x = 0. Also
note the ranges of these function, especially tanh(x): as x → ∞,
both sinh(x) and cosh(x) approach e−x/2, hence tanh(x) ap-
proaches 1.

Figure 6.56: Graphs of the hyperbolic functions.
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The following example explores some of the properties of
these functions that bear remarkable resemblance to the proper-
ties of their trigonometric counterparts.

Example 1

Use the definitions of the hyperbolic functions to rewrite the following
expressions.

1) cosh2(x)− sinh2(x)

2) tanh2(x) + sech2(x)

3) 2 cosh(x) sinh(x)

4) d
dx
(

cosh(x)
)

5) d
dx
(

sinh(x)
)

6) d
dx
(

tanh(x)
)

Solution.
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1) cosh2(x)− sinh2(x) =
(

ex + e−x

2

)2

−
(

ex − e−x

2

)2

=
e2x + 2exe−x + e−2x

4
− e2x − 2exe−x + e−2x

4

=
4
4
= 1.

So cosh2(x)− sinh2(x) = 1.

2) tanh2(x) + sech2(x) =
sinh2(x)
cosh2(x)

+
1

cosh2(x)

=
sinh2(x) + 1

cosh2(x)
Now use identity from #1)

=
cosh2(x)
cosh2(x)

= 1

So tanh2(x) + sech2(x) = 1.

3) 2 cosh(x) sinh(x) = 2
(

ex + e−x

2

)(
ex − e−x

2

)

= 2 · e2x − e−2x

4

=
e2x − e−2x

2
= sinh(2x).

Thus 2 cosh(x) sinh(x) = sinh(2x).

4)
d

dx
(

cosh(x)
)
=

d
dx

(
ex + e−x

2

)

=
ex − e−x

2
= sinh(x)

So d
dx
(

cosh(x)
)
= sinh(x).

5)
d

dx
(

sinh(x)
)
=

d
dx

(
ex − e−x

2

)

=
ex + e−x

2
= cosh(x)

So d
dx
(

sinh(x)
)
= cosh(x).

6)
d

dx
(

tanh(x)
)
=

d
dx

(
sinh(x)
cosh(x)

)

=
cosh(x) cosh(x)− sinh(x) sinh(x)

cosh2(x)

=
1

cosh2(x)

= sech2(x)

So d
dx
(

tanh(x)
)
= sech2(x).

Activity 6.8–1

Compute the following limits.
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1) lim
x→∞

cosh(x)

2) lim
x→∞

sinh(x)

3) lim
x→∞

tanh(x)

4) lim
x→∞

(cosh(x)− sinh(x))

The following concept summarizes many of the important
identities relating to hyperbolic functions. Each can be verified
by referring back to the definition of the hyperbolic functions.

Useful Hyperbolic Function Properties

Basic Identities

1) cosh2(x)− sinh2(x) = 1

2) tanh2(x) + sech2(x) = 1

3) coth2(x)− csch2(x) = 1

4) cosh(2x) = cosh2(x) + sinh2(x)

5) sinh(2x) = 2 sinh(x) cosh(x)

6) cosh2(x) =
cosh(2x) + 1

2

7) sinh2(x) =
cosh(2x)− 1

2

Derivatives

1) d
dx
(

cosh(x)
)
= sinh(x)

2) d
dx
(

sinh(x)
)
= cosh(x)

3) d
dx
(

tanh(x)
)
= sech2(x)

4) d
dx
(

sech(x)
)
= − sech(x) tanh(x)

5) d
dx
(

csch(x)
)
= − csch(x) coth(x)

6) d
dx
(

coth(x)
)
= − csch2(x)

Integrals

1)
∫

cosh(x) dx = sinh(x) + C

2)
∫

sinh(x) dx = cosh(x) + C

3)
∫

tanh(x) dx = ln(cosh(x)) +C

4)
∫

coth(x) dx = ln | sinh(x) |+C

Example 2

Evaluate the following derivatives and integrals.

1)
d

dx
(

cosh(2x)
)

2)
∫

sech2(7t− 3) dt 3)
∫ ln(2)

0
cosh(x) dx

Solution.

1) Using the Chain Rule directly, we have d
dx
(

cosh(2x)
)
= 2 sinh(2x).

Just to demonstrate that it works, let’s also use the Basic Identity
cosh(2x) = cosh2(x) + sinh2(x).

d
dx
(

cosh(2x)
)
=

d
dx
(

cosh2(x) + sinh2(x)
)

= 2 cosh(x) sinh(x) + 2 sinh(x) cosh(x)

= 4 cosh(x) sinh(x).
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Using another Basic Identity, we can see that 4 cosh(x) sinh(x) =

2 sinh(2x). We get the same answer either way.

2) We employ substitution, with u = 7t− 3 and du = 7dt. Then we have:
∫

sech2(7t− 3) dt =
1
7

tanh(7t− 3) + C.

3)
∫ ln(2)

0
cosh(x) dx = sinh(x)

∣∣∣
ln(2)

0
= sinh(ln(2))− sinh(0) = sinh(ln(2)).

We can simplify this last expression as sinh x is based on exponentials:

sinh(ln(2)) =
eln(2) − e− ln(2)

2
=

2− 1/2
2

=
3
4

.

Activity 6.8–2

Evaluate the following integrals.

1)
∫

sinh(3x) + x3 dx

2)
∫

tanh(x) dx)

3)
∫

cosh2(x) dx

4)
∫ sinh(x)

1 + cosh2(x)
dx

Inverse Hyperbolic Functions

Just as the inverse trigonometric functions are useful in certain
integrations, the inverse hyperbolic functions are useful with
others. Table 6.5 shows the restrictions on the domains to make
each function one-to-one and the resulting domains and ranges
of their inverse functions. Their graphs are shown in Figure 6.57.

Function Domain Range
cosh(x) [0, ∞) [1, ∞)
sinh(x) (−∞, ∞) (−∞, ∞)
tanh(x) (−∞, ∞) (−1, 1)
sech(x) [0, ∞) (0, 1]
csch(x) (−∞, 0) ∪ (0, ∞) (−∞, 0) ∪ (0, ∞)
coth(x) (−∞, 0) ∪ (0, ∞) (−∞,−1) ∪ (1, ∞)

Table 6.4: Domains and ranges of the hyperbolic
functions.

Function Domain Range

cosh−1(x) [1, ∞) [0, ∞)

sinh−1(x) [−∞, ∞) [−∞, ∞)

tanh−1(x) (−1, 1) (−∞, ∞)

sech−1(x) (0, 1] [0, ∞)

csch−1(x) (−∞, 0) ∪ (0, ∞) (−∞, 0) ∪ (0, ∞)

coth−1(x) (−∞,−1) ∪ (1, ∞) (−∞, 0) ∪ (0, ∞)

Table 6.5: Domains and ranges of the inverse hy-
perbolic functions.

Because the hyperbolic functions are defined in terms of ex-
ponential functions, their inverses can be expressed in terms of
logarithms. It is often more convenient to refer to sinh−1 x than
to ln

(
x +
√

x2 + 1
)
, especially when one is working on theory

and does not need to compute actual values. On the other hand,
when computations are needed, technology is often helpful but
many hand-held calculators lack a convenient sinh−1 x button.
(Often it can be accessed under a menu system, but not conve-
niently.) In such a situation, the logarithmic representation is
useful.

In next concept, both the inverse hyperbolic and logarithmic
function representations of the antiderivative are given. Again,
these latter functions are often more useful than the former.
Note how inverse hyperbolic functions can be used to solve inte-
grals we used Trigonometric Substitution to solve in Section 5.3.

Logarithmic definitions of Inverse
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Figure 6.57: Graphs of the hyperbolic functions
and their inverses.

Hyperbolic Functions

1) cosh−1(x) = ln
(

x +
√

x2 − 1
)
; x ≥ 1

2) tanh−1(x) =
1
2

ln
(

1 + x
1− x

)
; |x| < 1

3) sech−1(x) = ln

(
1 +
√

1− x2

x

)
; 0 < x ≤ 1

4) sinh−1(x) = ln
(

x +
√

x2 + 1
)

5) coth−1(x) =
1
2

ln
(

x + 1
x− 1

)
; |x| > 1

6) csch−1(x) = ln

(
1
x
+

√
1 + x2

|x|

)
; x 6= 0

The following concepts give the derivatives and integrals re-
lating to the inverse hyperbolic functions.

Derivatives Involving Inverse Hyperbolic
Functions



6.8. Hyperbolic Functions 527

1)
d

dx
(

cosh−1(x)
)
=

1√
x2 − 1

; x > 1

2)
d

dx
(

sinh−1(x)
)
=

1√
x2 + 1

3)
d

dx
(

tanh−1(x)
)
=

1
1− x2 ; |x| < 1

4)
d

dx
(

sech−1(x)
)
=

−1

x
√

1− x2
; 0 < x < 1

5)
d

dx
(

csch−1(x)
)
=

−1

|x|
√

1 + x2
; x 6= 0

6)
d

dx
(

coth−1(x)
)
=

1
1− x2 ; |x| > 1

Activity 6.8–3

Differentiate the following functions.

1)
d

dx
(sinh(3x + x3))

2)
d

dx
(arccos(tanh(x)))

3)
d

dx
(sinh−1(3 tanh(3x)))

4)
d

dx
(cosh−1(

√
x2 + 1))

5) Show that f (t) = cosh(
√

3t)− 2√
3

sinh(
√

3t) is a solution to the dif-

ferential equation f ′′ − 3 f = 0.

Integrals Involving Inverse Hyperbolic
Functions

1)

∫ 1√
x2 − a2

dx = cosh−1
( x

a

)
+ C; 0 < a < x

= ln
∣∣∣x +

√
x2 − a2

∣∣∣+ C
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2)

∫ 1√
x2 + a2

dx = sinh−1
( x

a

)
+ C; a > 0

= ln
∣∣∣x +

√
x2 + a2

∣∣∣+ C

3)

∫ 1
a2 − x2 dx =





1
a tanh−1 ( x

a
)
+ C x2 < a2

1
a coth−1 ( x

a
)
+ C a2 < x2

=
1
2

ln
∣∣∣∣
a + x
a− x

∣∣∣∣+ C

4)

∫ 1

x
√

a2 − x2
dx = −1

a
sech−1

( x
a

)
+ C; 0 < x < a

=
1
a

ln
(

x
a +
√

a2 − x2

)
+ C

5)

∫ 1

x
√

x2 + a2
dx = −1

a
csch−1

∣∣∣ x
a

∣∣∣+ C; x 6= 0, a > 0

=
1
a

ln
∣∣∣∣

x
a +
√

a2 + x2

∣∣∣∣+ C

Example 3

Evaluate the following.

1)
d

dx

[
cosh−1

(
3x− 2

5

)]
2)
∫ 1

x2 − 1
dx 3)

∫ 1√
9x2 + 10

dx

Solution.

1) Applying the concepts along with the Chain Rule gives:

d
dx

[
cosh−1

(
3x− 2

5

)]
=

1√(
3x−2

5

)
− 1
· 3

5
.

2) Multiplying the numerator and denominator by (−1) gives:
∫ 1

x2 − 1
dx =

∫ −1
1− x2 dx. The second integral can be solved with a direct applica-
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tion of item #3 from the integral concepts, with a = 1. Thus
∫ 1

x2 − 1
dx = −

∫ 1
1− x2 dx

=





− tanh−1 (x) + C x2 < 1

− coth−1 (x) + C 1 < x2

= −1
2

ln
∣∣∣∣

x + 1
x− 1

∣∣∣∣+ C

=
1
2

ln
∣∣∣∣

x− 1
x + 1

∣∣∣∣+ C.

3) This requires a substitution; let u = 3x, hence du = 3dx. We have
∫ 1√

9x2 + 10
dx =

1
3

∫ 1√
u2 + 10

du.

Note a2 = 10, hence a =
√

10. Now apply the integral rule.

=
1
3

sinh−1
(

3x√
10

)
+ C

=
1
3

ln
∣∣∣3x +

√
9x2 + 10

∣∣∣+ C.

Summary

In this section, we encountered the following important ideas:

• The hyperbolic functions are similar to trigonometric functions in that they both can represent distances
from the origin to a conic section.
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Exercises

Problems
In Exercises 1–8, verify the identity.

1) coth2 x− csch2 x = 1

2) cosh 2x = cosh2 x + sinh2 x

3) cosh2 x =
cosh 2x + 1

2

4) sinh2 x =
cosh 2x− 1

2

5)
d

dx
[sech x] = − sech x tanh x

6)
d

dx
[coth x] = − csch2 x

7)
∫

tanh x dx = ln(cosh x) + C

8)
∫

coth x dx = ln | sinh x|+ C

In Exercises 9–19, differentiate the given function.

9) f (x) = cosh 2x

10) f (x) = tanh(x2)

11) f (x) = ln(sinh x)

12) f (x) = sinh x cosh x

13) f (x) = x sinh x− cosh x

14) f (x) = sech−1(x2)

15) f (x) = tanh−1(cos x)

16) f (x) = cosh−1(sec x)

17) f (x) = sinh−1(3x)

18) f (x) = cosh−1(2x2)

19) f (x) = tanh−1(x + 5)

In Exercises 20–24, produce the equation of the line
tangent to the function at the given x-value.

20) f (x) = sinh x at x = 0

21) f (x) = cosh x at x = ln 2

22) f (x) = sech2 x at x = ln 3

23) f (x) = sinh−1 x at x = 0

24) f (x) = cosh−1 x at x =
√

2

In Exercises 25–36, evaluate the given indefinite inte-
gral.

25)
∫

tanh(2x) dx

26)
∫

cosh(3x− 7) dx

27)
∫

sinh x cosh x dx

28)
∫ 1

9− x2 dx

29)
∫ 2x√

x4 − 4
dx

30)
∫ √

x√
1 + x3

dx

31)
∫ 1

x4 − 16
dx

32)
∫ 1

x2 + x
dx

33)
∫ ex

e2x + 1
dx

34)
∫

sinh−1 x dx

35)
∫

tanh−1 x dx

36)
∫

sech x dx (Hint: mutiply by cosh x
cosh x ; set u =

sinh x.)

In Exercises 37–39, evaluate the given definite integral.

37)
∫ 1

−1
sinh x dx

38)
∫ ln 2

− ln 2
cosh x dx

39)
∫ 1

0
tanh−1 x dx
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