967 research outputs found

    Consciousness and the Wigner's friend problem

    Full text link
    It is generally agreed that decoherence theory is, if not a complete answer, at least a great step forward towards a solution of the quantum measurement problem. It is shown here however that in the cases in which a sentient being is explicitly assumed to take cognizance of the outcome the reasons we have for judging this way are not totally consistent, so that the question has to be considered anew. It is pointed out that the way the Broglie-Bohm model solves the riddle suggests a possible clue, consisting in assuming that even very simple systems may have some sort of a proto-consciousness, but that their ``internal states of consciousness'' are not predictive. It is, next, easily shown that if we imagine the systems get larger, in virtue of decoherence their internal states of consciousness progressively gain in predictive value. So that, for macro-systems, they may be identified (in practice) with the predictive states of consciousness on which we ground our observational predictions. The possibilities of carrying over this idea to standard quantum mechanics are then investigated. Conditions of conceptual consistency are considered and found rather strict, and, finally, two solutions emerge, differing conceptually very much from one another but in both of which the, possibly non-predictive, generalized internal states of consciousness play a crucial role

    Heat conductivity of DNA double helix

    Full text link
    Thermal conductivity of isolated single molecule DNA fragments is of importance for nanotechnology, but has not yet been measured experimentally. Theoretical estimates based on simplified (1D) models predict anomalously high thermal conductivity. To investigate thermal properties of single molecule DNA we have developed a 3D coarse-grained (CG) model that retains the realism of the full all-atom description, but is significantly more efficient. Within the proposed model each nucleotide is represented by 6 particles or grains; the grains interact via effective potentials inferred from classical molecular dynamics (MD) trajectories based on a well-established all-atom potential function. Comparisons of 10 ns long MD trajectories between the CG and the corresponding all-atom model show similar root-mean-square deviations from the canonical B-form DNA, and similar structural fluctuations. At the same time, the CG model is 10 to 100 times faster depending on the length of the DNA fragment in the simulation. Analysis of dispersion curves derived from the CG model yields longitudinal sound velocity and torsional stiffness in close agreement with existing experiments. The computational efficiency of the CG model makes it possible to calculate thermal conductivity of a single DNA molecule not yet available experimentally. For a uniform (polyG-polyC) DNA, the estimated conductivity coefficient is 0.3 W/mK which is half the value of thermal conductivity for water. This result is in stark contrast with estimates of thermal conductivity for simplified, effectively 1D chains ("beads on a spring") that predict anomalous (infinite) thermal conductivity. Thus, full 3D character of DNA double-helix retained in the proposed model appears to be essential for describing its thermal properties at a single molecule level.Comment: 16 pages, 12 figure

    Local Simulation Algorithms for Coulombic Interactions

    Full text link
    We consider dynamically constrained Monte-Carlo dynamics and show that this leads to the generation of long ranged effective interactions. This allows us to construct a local algorithm for the simulation of charged systems without ever having to evaluate pair potentials or solve the Poisson equation. We discuss a simple implementation of a charged lattice gas as well as more elaborate off-lattice versions of the algorithm. There are analogies between our formulation of electrostatics and the bosonic Hubbard model in the phase approximation. Cluster methods developed for this model further improve the efficiency of the electrostatics algorithm.Comment: Proceedings Statphys22 10 page

    Local Simulation Algorithms for Coulomb Interaction

    Full text link
    Long ranged electrostatic interactions are time consuming to calculate in molecular dynamics and Monte-Carlo simulations. We introduce an algorithmic framework for simulating charged particles which modifies the dynamics so as to allow equilibration using a local Hamiltonian. The method introduces an auxiliary field with constrained dynamics so that the equilibrium distribution is determined by the Coulomb interaction. We demonstrate the efficiency of the method by simulating a simple, charged lattice gas.Comment: Last figure changed to improve demonstration of numerical efficienc

    Tsunami observations by coastal ocean radar

    Get PDF
    When tsunami waves propagate across the open ocean, they are steered by the Coriolis effect and refraction due to gentle gradients in the bathymetry on scales longer than the wavelength. When the wave encounters steep gradients at the edges of continental shelves and at the coast, the wave becomes nonlinear and conservation of momentum produces squirts of surface current at the head of submerged canyons and in coastal bays. High frequency (HF) coastal ocean radar is well conditioned to observe the surface current bursts at the edge of the continental shelf and give a warning of 40 minutes to 2 hours when the shelf is 50 to 200km wide. The period of tsunami waves is invariant over changes in bathymetry and is in the range 2 to 30 minutes. Wavelengths for tsunamis (in 500 to 3000m depth) are in the range 8.5 to over 200 km, and on a shelf where the depth is about 50m (as in the Great Barrier Reef (GBR)) the wavelengths are in the range 2.5 to 30 km. In the use of HF radar technology, there is a trade-off between the precision of surface current speed measurements and time resolution. It is shown that the phased array HF ocean surface radar being deployed in the GBR and operating in a routine way for mapping surface currents, can resolve surface current squirts from tsunamis in the wave period range 20 to 30 minutes and in the wavelength range greater than about 6 km. An advantage in signal-to-noise ratio can be obtained from the prior knowledge of the spatial pattern of the squirts at the edge of the continental shelf, and it is estimated that, with this analysis, the time resolution of the GBR radar may be reduced to about 2.5 minutes, which corresponds to a capability to detect tsunamis at the shelf edge in the period range 5 to 30 minutes. It is estimated that the lower limit of squirt velocity detection at the shelf edge would correspond to a tsunami with water elevation of about 2.5 cm in the open ocean. This means that the GBR HF radar is well conditioned for use as a monitor of small, as well as larger, tsunamis and has the potential to contribute to the understanding of tsunami genesis research

    Direct and indirect effect of bt cotton and no bt cotton on the development and reproduction of the predator Podisus nigrispinus (Dallas, 1851) (Hemiptera: Pentatomidae).

    Get PDF
    Made available in DSpace on 2018-01-11T23:37:27Z (GMT). No. of bitstreams: 1 AJPS2017052713523500.pdf: 269982 bytes, checksum: d9137e9fb42cd6754e8e28148dfd860a (MD5) Previous issue date: 2018-01-10bitstream/item/170789/1/AJPS-2017052713523500.pd

    Tumour necrosis factor production and natural killer cell activity in peripheral blood during treatment with recombinant tumour necrosis factor.

    Get PDF
    Tumour necrosis factor (TNF) has been found to be an important immunomodulator. Among other functions TNF activates natural killer (NK) cells and stimulates monocytes/macrophages in an autocrine fashion. TNF production and NK activity in peripheral blood mononuclear cells were determined in a clinical phase I study in which recombinant human (rh) TNF was administered as a continuous infusion weekly for a period of 8 weeks. Even though TNF production and NK activity were significantly reduced directly after rhTNF infusion the effect proved to be transient and most pronounced at the first rhTNF administration. One day after completion of the rhTNF infusion the peripheral cells released more TNF into the supernatant compared to TNF activity immediately before the rhTNF infusion. This effect was conspicuous in non-stimulated cultures. After repeated rhTNF infusions both stimulated and non-stimulated TNF production of the peripheral blood mononuclear cells was increased. NK cell activity was also enhanced after repeated cycles of rhTNF administration as compared to early rhTNF treatment. Thus, repeated rhTNF infusions lead to a stimulatory effect on TNF production and NK activity of peripheral blood cells
    • …
    corecore