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Abstract: Much progress has been achieved on quantitative assessment of electrostatic interac-
tions on the all-atom level by molecular mechanics and dynamics, as well as on the macroscopic
level by models of continuum solvation. Bridging of the two representations—an area of active
research—is necessary for studying integrated functions of large systems of biological importance.
Following perspectives of both discrete (N-body) interaction and continuum solvation, we present
a new algorithm, DiSCO (Discrete Surface Charge Optimization), for economically describing the
electrostatic field predicted by Poisson–Boltzmann theory using a discrete set of Debye–Hückel
charges distributed on a virtual surface enclosing the macromolecule. The procedure in DiSCO
relies on the linear behavior of the Poisson–Boltzmann equation in the far zone; thus contributions
from a number of molecules may be superimposed, and the electrostatic potential, or equivalently
the electrostatic field, may be quickly and efficiently approximated by the summation of contribu-
tions from the set of charges. The desired accuracy of this approximation is achieved by minimizing
thedifferencebetween thePoisson–Boltzmann electrostatic field and that produced by thelinearized
Debye–Hückel approximation using our truncated Newton optimization package. DiSCO is applied
here to describe the salt-dependent electrostatic environment of the nucleosome core particle in
terms of several hundred surface charges. This representation forms the basis for modeling—by
dynamic simulations (or Monte Carlo)—the folding of chromatin. DiSCO can be applied more
generally to many macromolecular systems whose size and complexity warrant a model resolution
between the all-atom and macroscopic levels. © 2000 John Wiley & Sons, Inc. Biopoly 58:
106–115, 2001
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INTRODUCTION

Salt-mediated electrostatic interactionsplay akey role
in governing the structural and dynamic details of

many important macromolecular processes, such as
the mechanism of ion channels and the folding of
nucleoprotein complex chromatin. Effective use of
the emerging wealth of data on sequences and struc-
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tures of biomolecules requires strategies for distilling
detailed information into a minimal representation
that captures the important features of a given system.
For example, the cellular-level organization of DNA,
on the scale of thousands of base pairs and more, is
modeled using a uniformly charged elastic polymer
representation for DNA, with the DNA immersed in
an electrolytic viscous solvent. It is far more difficult
to model the proteins to which DNA is bound in living
systems, and that regulate not only the macroscopic
structure of the DNA but also major biochemical
pathways associated with the genetic material. The
sizes of such systems demand biophysical descrip-
tions in the spirit of polymer-level models of DNA.
Yet these systems are much less regular in terms of
shape and charge distribution than simple DNA and
require a more sophisticated treatment. In this paper
we introduce and apply to the nucleosome core par-
ticle (see Figure 1 and Ref. 1) our method DiSCO
(Discrete Surface Charge Optimization) for producing
an optimized discreteN-body Debye–Hu¨ckel poten-
tial to match the electric field predicted by the non-
linear Poisson–Boltzmann equation. This economical
description of the electrostatics associated with a sol-
vated macromolecule can be incorporated into a ma-
crolevel model, such as a model for the nucleoprotein
complex chromatin, the system that motivated the
present study. More generally, DiSCO allows inte-
grating atomic-level details of a biomolecule into an
accurate biophysical description of a system too large
to treat on the atomic scale.

In our application of DiSCO to the crystallographi-
cally solved nucleosome core particle,1 we show that
the DiSCO approximation is accurate for distances
within one Debye length away from the surface of
macromolecule (e.g., 14 Å at a salt concentration of
0.05M). Specifically, a 277-charge Debye–Hu¨ckel ap-
proximation is accurate to within 10% error at dis-
tances greater that 10 Å from the surface of the core
particle. As the number of effective charges and the
distance from the surface of the macromolecule is
increased, the description becomes more accurate.
This accuracy at a range of salt concentrations war-
rants incorporation of this charged nucleosome model
into a macrolevel model for the structure and dynam-
ics of the chromatin fiber,2 an application limited to
date by an accurate treatment of the core particle
charge. More generally, our approach is applicable to
many other biomolecular systems whose size and
complexity warrant a model resolution between the
all-atom and macroscopic levels.

In the next section we review several approaches to
modeling electrostatic interactions in biomolecular
systems, including the application of Poisson–Boltz-
mann theory to solvated macromolecules. In the

Methods section we outline the theory and methods
behind theN-body parameterization. Specifically, a
rudimentary outline of Poisson–Boltzmann theory ap-
plied to macromolecules is presented. The details
involved in constructing theN-body Debye–Hu¨ckel
parameterization are presented next. In the Results
section, we detail the application of the DiSCO model
to describe the electrostatics of the nucleosome core
particle. Our work combined with that of Stigter for
the representation of salt-mediated electrostatic ef-
fects of biopolymers now makes possible a new line
of applications to chromatin folding.2

BACKGROUND

Modeling Challenges on Many Levels

Significant advances over the past decade have made
the calculation of long-range electrostatic interactions
in molecular dynamics (MD) simulations more effi-
cient. Namely, fast multipole and particle mesh Ewald
techniques (see Darden et al., 1999,36 and refs.
therein) have reduced the associated2(N2) work for
a system ofN atoms to nearly linear complexity. Still,
when large systemsare modeled—such as a solvated
protein embedded in a phospholipid bilayer (91,000
atoms; 45,000 flexible)3—or when long simulations
are performed—such as a microsecond trajectory for a
36-residue peptide (12,000 atoms)4—the nonbonded
interactions are simplified via cutoffs, even when ded-
icated supercomputing resources are available.

Another approach to simplifying the atom-level
N-body calculation is to exclude explicit treatment of
the solvent and to construct a pairwise interaction
model that considers a dielectric cavity surrounding
the molecular charges. Such generalized Born poten-
tials, which can be modified to approximate salt-
screening effects, have proven useful at describing
thermodynamic properties of the solvation of macro-
molecules, i.e., consistent with those generated from
detailed simulations based on explicit water mod-
els.5,6 However, a realistic treatment of solvent hy-
drodynamics is missing from these studies.

This limitation can be addressed by invoking con-
tinuous approximations, not only for solvent electro-
statics, but also for solvent hydrodynamics. For ex-
ample, interactions of solvent molecules with the
macromolecular system can be modeled as a combi-
nation of stochastic and frictional forces. The corre-
lation structure of the stochastic forces is related to the
form of the frictional interaction model, which is
included to mimic the continuum-level mechanics of
the solvating fluid.7 A popular application of this
approach is in the simulation of polymer-level models
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FIGURE 1 (A) Crystal structure of nucleosome core particle from Luger et al.1 A left-handed
supercoil of 146 bp of DNA is wrapped around a protein core composed of an octamer of histone
proteins (H2A, H2B, H3, and H4). (B) Sketch of the surfaceSused to enclose the core particle. The
surface is composed of a disk and a cylinder: A disk of 55 Å radius and height of 55 Å encloses the
main body of the core particle; a cylinder of 5 Å and 30 Å height encloses the tail of the H3 histone.
(C) The relationship between the surfaceS and the regionV9 on the exterior of the macromolecule.
The Stern layer lies between the solvent-accessible and the salt-accessible surfaces of the macro-
molecule. The surfaceS, upon which theN Debye–Hu¨ckel charges are arranged, encloses the
macromolecule. At a distanced beyondS lies the regionV9 in which theN-body approximation is
compared to the field predicted by the PBE.
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of DNA,8–11using Brownian dynamics (BD).12 These
formulations employ anN-body representation of the
hydrodynamic interactions among the subunits of the
DNA model, specified by a 3N 3 3N matrix, such as
the Rotne–Prager tensor,13 which relates the velocity
of a given subunit to the hydrodynamic forces trans-
mitted to all the particles in the system.

The Poisson–Boltzmann (PB) Approach

For macroscopic DNA models, electrostatic interac-
tions are typically described by anN-body potential
that arises from the mean field PB treatment of dis-
solved ions and solvent. In PB theory,14–16 the elec-
trostatic field is governed by Gauss’ Law for electro-
statics.17 Solvating water is modeled as an inhomo-
geneously distributed continuous dielectric medium,
and dissolved ions are treated as a continuous con-
centration field, distributed according to the principles
of statistical mechanics (see Methods). These assump-
tions are expressed mathematically in the well-known
Poisson-Boltzmann equation (PBE), which is nonlin-
ear and, in general, only solvable using approximate
numerical methods.

PB theory can be used to treat the salt-screened
electrostatic interactions between biomolecules and to
calculate long-range forces used in simulating diffusion-
controlled interactions,18 such as in enzyme–substrate
interactions. However, in such applications, the PBE
must be reformulated and solved for each new geometry
as the relative orientation of the molecules changes dur-
ing the simulation. The large amount of computational
work involved in this repeated PBE formulation can be
reduced by superposing solutions to the linearized PBE
(LPBE) for molecules that are sufficiently far apart.
Since exact solutions for the LPBE in homogeneous
media are easily obtained from the superposition of
fundamental solutions for point charges, an approxima-
tion of the far-field solution to the PBE, using the field
produced by a number of point sources for the LPBE,
can be constructed. Since the biomolecular system is
neither homogeneous nor linear, the values of the point
sources, which are effective Debye–Hu¨ckel charges,
must be varied to optimally reproduce the far zone
electrostatic field.

N-Body Approaches Based
on PB Theory

In the late 1970s, Stigter19 pioneered such a Debye–
Hückel approximation for DNA electrostatics. His
approximation is based on solving the PBE for an
infinitely long and uniformly charged DNA cylinder
and matching the resulting solution in the far zone to
a solution to the LPBE associated with a line of

uniform charge density located at the center of the
DNA cylinder. The nonlinear solution was possible in
this case (without the aid of modern computers!)
because the cylindrical problem is formulated in terms
of only one independent variable, radial distance.
Stigter’s work has made possible numerous applica-
tions of BD and Langevin dynamics to DNA systems
of several thousand base pairs.8,11,20,21

Proteins present a more difficult subject for this
Debye–Hu¨ckel approach to salt-mediated electrostat-
ics because their geometry and charge distribution is
much less regular than for DNA. Still, this represen-
tation can be generalized to irregularly shaped mole-
cules by constructing the linear approximation from a
number of discrete Debye–Hu¨ckel charges distributed
on the surface of the biomolecule. The value assigned
to each charge on the surface can be obtained by
matching the Debye–Hu¨ckel electrostatic field to the
field generated based on the nonlinear PBE.

For our general method DiSCO, the accuracy of
the discrete Debye–Hu¨ckel approximation is assessed
by formulating and minimizing an objective function
that reflects the residual between the electrostatic field
predicted by the PBE and the field associated with the
Debye–Hu¨ckel charges. The minimum value of the
residual depends on the number of point charges, the
definition of the far zone (distance from the macro-
molecule where the linear approximation is valid),
and the salt concentration.

A similar approach for finding an effective charge
description for solvated macromolecules was intro-
duced by Gabdoulline and Wade.22 By representing
the electrostatics of a protein with charges placed at
the center of each residue head group and each
charged side chain, they matched the resulting poten-
tial to that obtained from the linearized Poisson-Bolt-
zmann equation. Our approach uses the electric field
associated with the nonlinear Poisson–Boltzmann
equation, rather than the potential from the linear
equation, as the standard for evaluating the accuracy
of the effective charge approximation. This makes it
possible to treat the electrostatic forces associated
with large highly charged biomolecules more directly.
We also allow for a variable number of point charges
to be distributed on the surface enclosing the macro-
molecule; this number can be adjusted based on de-
sired accuracy and resolution, and balanced with the
computational work entailed.

METHODS

Poisson–Boltzmann Theory
The PBE for an electrostatic potentialf as a function of
positionr for a solvated system containing monovalent ions
is described as14
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¹ z @e~r !¹f~r !# 2 k# 2~r !sinh~f~r !! 5 24pr~r !/kBT
(1)

wheree(r ) is the position-dependent permittivity (typically
smaller in the interior macromolecular region) andr(r ) is
the fixed charge density. The Debye–Hu¨ckel parameterk# (r )
is defined as

k# 2~r ! 5
8pe2NACs

kBT
(2)

in the solvent. HereNA and kB denote Avagadro’s and
Boltzmann’s constants, respectively;e is the elementary
charge,Cs is the bulk ion concentration in moles per liter,
and T is the absolute temperature. In Equation (1),f is a
dimensionless quantity,f 5 eF/kBT, where F is the
potential in units of electrostatic energy per unit charge.

The position dependency ofk#2(r ) is determined by the
volume of the system accessible by the electrolyte. In re-
gions not available to salt,k#2(r ) 5 0. Thus the Debye length
k21, or

1

k
5

e1/2~r !

k# ~r !
(3)

is effectively infinite on the interior of a macromolecule.
The salt exclusion zone is usually assumed to extend be-
yond the interior of the macromolecule.

The PBE can be linearized by expanding the hyperbolic
sine function as a Taylor series and retaining only the
first-order term. The resulting LPBE approximation,

¹ z @e~r !¹f~r ! 2 k# 2f~r !# 5 24pr~r !/kBT (4)

is valid for relatively weak potentialsef ! 1.

DiSCO—Construction of the N-Body
Debye–Hückel Approximation

TheN-body Debye–Hu¨ckel parameterization is constructed
by optimizing the values of the effective charges according
to the procedure detailed below:

1. Solve the PBE.Solve the PBE for a given three-
dimensional macromolecular structure using atomic-
level partial charges and the desired salt concentra-
tion. The resulting potentialf(r ), defined for the
numerical grid points {r i}, corresponds to the elec-
trostatic fieldE(r i) 5 2¹f(r i). The DelPhi package
developed by Honig et al.16,23–26or the UHBD pack-
age of McCammon and co-workers18 can be used to
obtain a solution to a finite difference approximation
of the PBE on a Cartesian grid {r i}.

2. Construct a Virtual SurfaceS. The surfaceSencloses
the macromolecule (see Figure 1) and is used to
define the locations of theN Debye–Hu¨ckel charges.

3. Calculate the Effective Charge onS. Calculate the
surface charges(r ) corresponding to the electrostatic
field E(r ) from

s~r j! 5
e

4p
nj z E~r j! (5)

wheres(r j) is the surface charge density,r j is a point
on the surfaceS, andnj is the unit outward normal to
S.

4. Define the Debye–Hu¨ckel Charges.The N Debye–
Hückel charges {q*j}, located onS, are expressed in
terms of the surface charge densitys(r ):

q*j 5 s~r j!dSj (6)

wheredSj is the finite surface area associated with the
point r j on the surfaceS.

5. Optimize the Residual Function.The residual func-
tion

R~Ẽ, E! 5
1

V9 E
V9

iE 2 Ẽi
iEi dV (7)

or discretized version

R~Ẽ, E! 5
1

Nv
O
i[V9i

iE~r i! 2 Ẽ~r i!i
iE~r i!i

(8)

is a measure of the difference betweenE (the field
predicted by the PBE) andẼ (the field predicted by
the Debye–Hu¨ckel equation). In these equationsV9 is
a given volume on the exterior of the surfaceS, and
V9i is the set of grid points contained inV9 (e.g., all
grid points that lie within a certain range of distance
from S; see Figure 1), andNv is the number of grid
points in V9i. The field Ẽ(r i) is evaluated as the
negative gradient of the Debye–Hu¨ckel potential gen-
erated by theN charges {qj}

f̃~r i, $qj%! 5 O
j51

N
qje

2kr ij

erij
(9)

which is an exact solution to the LPBE, in the homo-
geneous solvent, away from the molecular boundary.
Heree is the permittivity of the solvent, andr ij is the
scalar distance between position vectorsr i andr j (the
locations of thei th andj th charges). The correspond-
ing field is

Ẽ~r i! 5
1

e O
j51

N

qje
2kr ijFk

rij
2 1

1

rij
3G~r i 2 r j! (10)

The residual function is minimized by varying the
charges charges {qj} (independent variables). For
this minimization task, we use the efficient truncated
Newton package developed by Schlick and co-work-
ers.27–29

We have also considered an alternative approach for
charge optimization using a residualRf based on the po-
tential f, rather than the electrostatic fieldE as above. We
find that this alternative approach is less robust. Namely,
when optimal charges based onRf are evaluated using the
electric field residual of Eq. (8), the corresponding gradient
is very large. This is not the case when optimized charges
based on the electric field residual are used as an initial
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guess for minimizingRf. This is likely because differences
between the Debye–Hu¨ckel field and the field predicted by
the PBE vary in space more smoothly for the electrostatic
potential than for the electrostatic field.

RESULTS

The Nucleosome Core Particle and
PBE Calculations

The beautiful nucleosome core crystal structure re-
ported by Luger et al.1 (PDB code 1A0I) is an octamer
protein core (two copies each of H2A, H2B, H3, and
H4; see Figure 1A) surrounded by 146 base pairs (bp)
of left-handed supercoiled DNA. Figure 1B shows the
virtual surfaceSused to enclose the nucleosome core.
The surface is constructed from a disk and a slender
cylinder. The disk (55 Å radius and 55 Å width)
encloses the main body of the octamer and the
wrapped DNA. The other cylinder (5 Å radius and 30
Å length) encloses the H3 tail, which extends between
the gyres of the wrapped DNA.

The atomic partial charges are assigned using the
AMBER force field developed by Cornell et al.30 As
discussed in Honig et al.,16 the electrostatic permit-
tivity e is set to 2eo on the interior and 80eo on the
solvent-accessible exterior of the biomolecule (eo is
the free-space permittivity). The solvent-accessible
region is determined as the set of all points on which
a centered 1.4 Å radius sphere used to represent a
water molecule does not overlap the van der Waals
radii of the atoms making up the core particle. A
similar procedure is adopted to determine the salt-
accessible region. Our values of 2 Å radii for sodium
and chloride ions result in an approximately 0.6 Å
Stern layer, modeled as a high dielectric solvent (e
5 80eo) with no dissolved ions (k# 5 0).

Because the core particle is relatively highly
charged (the total negative charge assigned is
22234e while the total positive charge is2036e), a
robust nonlinear solver is required for obtaining so-
lutions to the PBE. The Qnifft DelPhi solver31 is
implemented with a grid of 653 points, the maximum
allowable. Using the resolution 2.5 Å, the grid corre-
sponds to a cubic domain of 1603 160 3 160 Å3.

The “focusing” boundary condition for PBE cal-
culations24,32 is used to minimize edge effects in the
numerical solution by performing calculations on suc-
cessively smaller grids. For each successive iteration,
the boundary of the computational domain lies within
the solution obtained at the previous level of refine-
ment. The boundary condition is set by interpolating
the potential of the previous solution onto the bound-
ary of the grid.

We performed calculations at various salt concen-
trations ranging betweenCs 5 0.01M and Cs

5 0.10M. The Grasp-generated33 images in Figure 2
for Cs 5 0.01 and0.10M show that the DNA region
adopts a mainly negative potential (red), while the
surface of the histones includes regions of both neg-
ative and positive (blue) potential. The H3 tail adopts
a mostly positive potential, due to the ubiquity of the
basic amino acid lysine. At the higher salt, increased
screening reduces the magnitude of the surface poten-
tial.

Generation of N-Body Potential
by DiSCO

We distribute the surface point charges at six levels of
resolution (N 5 62, 79, 144, 199, 277, and353) as
shown in Figure 3. For each case, charges are ar-
ranged in a hexagonal pattern on each of the flat
surfaces of the main disk with additional charges are
arranged on the tail cylinder and the circular outer
edge of the main disk. The figure indicates the number
of charges distributed over each region—the top and
bottom flat surfaces of the core disk, the circular outer
edge of the disk, and the H3 tail body.

In optimizing theN-body potential, we introduce
the parameterd to defineV9, the set of grid points
over which theN-body approximation is assessed
relative to the nonlinear PBE potential. The setV9 is
composed of all grid points for which the minimum
distance between the grid point and the surfaceS is
greater than or equal tod. The relationship between
the macromolecular surfaces, the enclosing surfaceS,
and the regionV9 is diagrammed in Figure 1B.

The set of initial charges {q*j}, the Debye–Hu¨ckel
potential f̃(r i, { q*j}), and associated electrostatic
field Ẽ(r i, { q*j}), produces the residualR(Ẽ({ q*j}),
E) for the initial guess (see Methods). ForCs

5 0.05M, N 5 353, andd 5 10 Å, we find that the
field generated by the initial guess set of Debye–
Hückel charges {q*j} differs from the field predicted
by the nonlinear PBE by about 57% in the regionV9i
(R 5 0.57). TheTNPACK minimizer reduces the
gradient of the objective function by ten orders of
magnitude in 50 min of CPU time on a Silicon Graph-
ics R10000 processor, resulting in an optimized value
of 6% [R(Ẽ({ qj}) 5 0.06]. ForN 5 62 charges, the
initial error of 60% is reduced to 21%, but requires
less than 1 min of CPU time. Figure 4 shows the
optimal value ofR as a function of salt concentration
for various values ofN.

Interestingly, accuracy does not vary monotoni-
cally with salt concentration. For example, atN
5 199 the minimum errorR is obtained atCs

5 0.02M. This minimum exists because at lower salt
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concentration the nonlinear behavior of the field ex-
tends farther into the solvent and limits the accuracy
of N-body representation. In the limit of high salt
concentration, the field varies over a smaller length
scale, so the accuracy of theN-body field at a fixed
resolution decreases as salt concentration increases.

At the lowest resolution and highest salt concen-
tration examined (N 5 62, Cs 5 0.10M), the opti-

mal N-body representation differs from the PBE field
by an average of 31% in the regionV9. The error for
N 5 62 is reduced to about 16% at 0.01M salt. The
behavior is more favorable at higher resolution: error
is less than 10% forN 5 277 and 353 points over the
full range of salt concentration.

The potentials predicted for theN 5 62 andN
5 277 approximations are compared to the electro-

FIGURE 2 Core particle electrostatic potential in two salt environments. Upper panel: Electro-
static potential on the surface of the nucleosome core particle, as predicted by the finite-difference
approximation of the PBE and rendered by Grasp33 at Cs 5 0.01M (left) andCs 5 0.10M (right).
Lower panel:N-body vs PBE-computed electrostatic potentials in the solvent surrounding the core
particle, as predicted by our model withN 5 62 and 277 charges vs that predicted by the finite
difference solution to the PBE, atCs 5 0.01M (left) and Cs 5 0.10M (right). The potential is
shown in a plane cutting through the center for the entire 1603 160 Å domain along with a detail
of the H3 tail region.
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static potential associated with the PBE in the lower
panels of Figure 2. Shown is a slice through the center
of the computational domain, with the particle ori-

ented as in Figure 1. We note that the potential is
mostly negative around the edge, except for in the
neighborhood of the H3 tail. Remarkably, even for the

FIGURE 3 Distribution of charges on the particle surfaceS at six different resolutions (N 5 62,
79, 144, 199, 277, and353) for Cs 5 0.05M. The distribution of charges over each region is
reported in parenthesis by three numbers corresponding to (1) the top and bottom flat surfaces, (2)
the circular outer edge, and (3) the H3 tail region of the nucleosome core model.

FIGURE 4 Assessment of accuracy of theN-body representation. Left panel: The relative error
R associated with theN-body Debye–Hu¨ckel representation as a function ofCs (the bulk salt
concentration in the solvent) for various charge set sizesN. Right panel: The relative errorRa(Ẽ,
E; x) associated with theN-body Debye–Hu¨ckel representation at a fixed distancex from the surface
of the core particle as a function ofx, for Cs 5 0.05M. We calculateRa( x) by integrating the error
over the surfaceA( x): Ra(Ẽ, E; x) 5 (1/Sx) *A( x) ((iE 2 Ẽi)/iEi) dA, whereA( x) is defined
as the surface outside the macromolecule that lies the normal distancex from the surfaceS. The
normalizing factorSx, is the area ofA( x). For the results shown here, the valued 5 10 Å is used
for evaluationR and optimizing theN charges.
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62-charge case (whereR 5 0.3 for Cs 5 0.10M),
gross features of the PBE potential are reproduced
with our discrete approximation. This low-order ap-
proximation is improved substantially asN is in-
creased to 277, as shown in the figure.

We also note that the accuracy of the Debye–
Hückel approximation increases with distance from
the macromolecular surface. This behavior is evident
in the right panel of Figure 4, which plots the error at
a fixed distance from the surfaceRa( x) as a function
of distance from the surface of the core particle for the
salt concentration ofCs 5 0.05M. Ra( x) is measured
as the average error over the points separated from the
surface by distancex; see legend to Figure 4. At
distances greater than the Debye length (13.5 Å forCs

5 0.05M), the error saturates to about 5% forN
5 277 andN 5 353.

The analyses presented here show that the 277-
charge model for the nucleosome produces an accu-
rate approximation to the PBE model. The much
cheaperN-body approximation can be integrated eas-
ily into a general simulation protocol that requires
evaluating salt-mediated electrostatic interactions at
each step.

FUTURE APPLICATIONS

Our approach described here, DiSCO, for anN-body
Debye-Hückel representation of a complex macromo-
lecular system, was motivated by our effort to model
the electrostatic forces acting on the chromatin fiber.2

The basic building block of chromatin is illustrated in
the upper panel of Figure 5: two-core particles con-
nected by a linker DNA segment. The DNA is de-
picted as a red tube that wraps around the core parti-
cles and is continuous with the linker DNA segment.
Previous models34,35 for the structure and dynamics
of chromatin have not considered the electrostatics of
the highly charged core particle. This simplification
has, to date, limited dynamic modeling of chromatin.
By treating the flexible linker DNA using a polymer
bead model8–11 and exploiting theN-body charge
model for the core, we can construct a polymer-level
model for the chromatin fiber, as shown in the middle
panel of Figure 5. This macroscale model (details
presented in a forthcoming publication2) ignores the
internal motions of atoms of the core particle and
treats the core complex as a rigid body, as done for the
several base pairs of linker DNA treated by each bead.
With our approximate treatment of the electrostatics
of this system, larger polynucleoseome systems can
be modeled, such as the 48-nucleosome structure
shown in the lower panel of Figure 5.

DiSCO requires both a PBE solver and a nonlinear
minimization package. In practice, we have used the
DelPhi package to obtain solutions to the PBE, but
other software packages may be equally suitable. The
quadratic convergence of our optimization package
TNPACK27–29used here was crucial in making accu-
rate minimizations of the residual function realizable.

The application of our methodology to a system as
large and highly charged as the nucleosome core

FIGURE 5 Construction of biophysical model for chro-
matin based on theN-body parameterization of core particle
electrostatics. Upper panel: A dinucleosome is depicted as
two core particle connected by linker DNA. DNA is repre-
sented as a continuous red tube. Middle panel: A macro-
level model for the dincleosome is constructed using the
N-body representation for core-particle effective charges
and a bead-like model for the flexible linker DNA. Lower
panel: A large polynucleosome model is constructed from a
serial array of 48 nucleosomes. The configuration shown
here was obtained from Monte Carlo sampling of the system
at the monovalent salt concentration of 0.01M. Details of
this model are presented in Ref. 2.
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particle demonstrates the potential for application of
similar methods to other large systems. For other
systems, the definition of the enclosing surface geom-
etry and the distribution of charges on the surface will
depend on the particular application. Surfaces may be
constructed from ideal geometric shapes, as we have
done here, or from automated routines for surface
generation.

In general, DiSCO can be applied to a broad class
of problems in which an efficient method for calcu-
lating the electrostatic interactions between biomol-
ecules in solution is desired. The resulting potential is
flexible in that it can be incorporated into most sim-
ulation protocols (energy minimization, Monte Carlo,
MD, or BD). For example, theN-body approximation
can help make PBE-based applications tractable (for a
certain range of intermolecular distances), eliminating
repeated PBE solutions as the relative orientation of
the molecules changes. This approach can thereby
help bridge details on the all-atom level with a mac-
roscopic treatment of biopolymer systems. Interested
users are invited to contact us for a program package.
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