38 research outputs found

    Involvement of Cytochrome P450 1A in the toxicity of aryl hydrocarbon receptor agonists : alteration arachidonic acid metabolism and production of reactive oxygen species

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 1998Two cytochrome P4501A-dependent mechanisms of aryl hydrocarbon receptor (AhR) agonist toxicity were examined in the marine teleost scup (Stenotomus chrysops), alteration of arachidonic acid (AA) metabolism and production of reactive oxygen species (ROS). In scup hepatic microsomes, cytochrome P450s including CYP1A and CYP2B-like proteins catalyzed regioselective metabolism of AA to eicosatrienoic and hydroxyeicosatetraenoic acids. Benzo[a]pyrene (BP) treatment induced liver microsomal AA metabolism, but that effect varied with season. Endogenous AA epoxides were recovered from scup liver, heart, and kidney, and their composition in the liver was altered by treatment with BP or 2,3,7,8-tetrachlorodibenzo-p-dioxin. In scup and mammals, the formation of ROS was stimulated by binding of 3,3',4,4-tetrachlorobiphenyl (TCB) to CYP1A, apparently CYP1Al. Attack of that ROS inactivated scup CYP1A. ROS release and inactivation of CYP1A were stimulated only by substrates of CYP1A that are slowly metabolized. In vivo, 3,3',4,4',5- pentachlorobiphenyl (PeCB) potently induced CYP1A mRNA, protein and catalytic activity at low doses (0.01-0.1 mg/kg), suppressed induction of CYP1A protein and catalytic activity at a high dose (1 mg/kg) and transiently induced oxidative stress in scup liver. The suppression of CYP1A induction was organ-dependent, with hepatic CYP1A being most susceptible to inactivation. The results suggest that ROS could be involved in the in vivo suppression of scup liver CYP1A by planar halogenated aromatic hydrocarbons. The reactive oxygen sensitive transcription factor, nuclear factor-KB (NF-KB), was characterized in scup. An NF-KB consensus binding sequence bound specifically to 3 proteins in scup liver, heart and kidney. One protein was recognized by an antibody to mammalian p50. Injection alone appeared to activate NF-KB. BP did not increase the activation ofNF-KB, and PeCB activated NF-KB in only 1 of 2 experiments. Last, CYP1A induction in endothelial cells of the American eel (Anguilla rostrata), a site which may be particularly susceptible to alterations in AA metabolism and ROS production, was described. Eel liver CYP1A responded to BP, 13-naphthoflavone and TCB in a dose-dependent fashion, and induction was correlated with hepatic inducer concentration. Endothelial CYP1A was inducible in a number of organs and was metabolically active. In the rete mirabile, penetration of endothelial CYP1A induction increased with increasing dose of AhR agonists, corresponding with an increase in inducer concentration. A transition from endothelial to epithelial staining occurred in the gill, heart and kidney at high inducer doses.My research was supported in part by the Lyons Fellowship, the MIT!WHOI Joint program, the Rinehart Coastal Research Center, NIH grant P42-ES07381, EPA grant R823890 and the Air Force Office of Scientific Research grant F40620-94-1039

    Direct Assessment of Cumulative Aryl Hydrocarbon Receptor Agonist Activity in Sera from Experimentally Exposed Mice and Environmentally Exposed Humans

    Get PDF
    Background: Aryl hydrocarbon receptor (AhR) ligands adversely affect many biological processes. However, assessment of the significance of human exposures is hampered by an incomplete understanding of how complex mixtures affect AhR activation/inactivation. Objectives: These studies used biological readouts to provide a broader context for estimating human risk than that obtained with serum extraction and gas chromatography/mass spectroscopy (GC/MS)-based assays alone. Methods: AhR agonist activity was quantified in sera from dioxin-treated mice, commercial human sources, and polychlorinated biphenyl (PCB)–exposed Faroe Islanders using an AhR-driven reporter cell line. To validate relationships between serum AhR agonist levels and biological outcomes, AhR agonist activity in mouse sera correlated with toxic end points. AhR agonist activity in unmanipulated (“neat”) human sera was compared with these biologically relevant doses and with GC/MS-assayed PCB levels. Results: Mouse serum AhR agonist activity correlated with injected dioxin dose, thymic atrophy, and heptomegaly, validating the use of neat serum to assess AhR agonist activity. AhR agonist activity in sera from Faroe Islanders varied widely, was associated with the frequency of recent pilot whale dinners, but did not correlate with levels of PCBs quantified by GC/MS. Surprisingly, significant “baseline” AhR activity was found in commercial human sera. Conclusions: An AhR reporter assay revealed cumulative levels of AhR activation potential in neat serum, whereas extraction may preclude detection of important non-dioxin-like biological activity. Significant levels of AhR agonist activity in commercial sera and in Faroe Islander sera, compared with that from experimentally exposed mice, suggest human exposures that are biologically relevant in both populations

    Environmental chemical-induced bone marrow B cell apoptosis: Death receptor-independent activation of a caspase-3 to caspase-8 pathway

    Get PDF
    ABSTRACT Programmed cell death is a critical process in B lymphocyte development. Premature apoptosis in developing B cells could affect the repertoire and number of mature B cells produced. Of particular concern is the ability of environmentally ubiquitous polycyclic aromatic hydrocarbons (PAH) to induce B cell apoptosis within the bone marrow microenvironment in a clonally nonspecific way. Here, models of bone marrow B cell development were used to assess the role of the "extrinsic" apoptosis pathway in PAH-induced apoptosis and to compare PAH-induced apoptosis with that induced during clonal deletion. A

    Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease

    Get PDF
    Background & aims: Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism. Methods: In a well-characterized human NAFLD cohort of 105 individuals, we investigated the effects of EC exposure on liver metabolism. We characterized the liver (via biopsy) and circulating metabolomes using 4 mass spectrometry-based analytical platforms, and measured PFAS and other ECs in serum. We subsequently compared these results with an exposure study in a PPARa-humanized mouse model. Results: PFAS exposure appears associated with perturbation of key hepatic metabolic pathways previously found altered in NAFLD, particularly those related to bile acid and lipid metabolism. We identified stronger associations between the liver metabolome, chemical exposure and NAFLD-associated clinical variables (liver fat content, HOMA-IR), in females than males. Specifically, we observed PFAS-associated upregulation of bile acids, triacylglycerols and ceramides, and association between chemical exposure and dysregulated glucose metabolism in females. The murine exposure study further corroborated our findings, vis-a-vis a sex-specific association between PFAS exposure and NAFLD-associated lipid changes. Conclusions: Females may be more sensitive to the harmful impacts of PFAS. Lipid-related changes subsequent to PFAS exposure may be secondary to the interplay between PFAS and bile acid metabolism. Lay summary: There is increasing evidence that specific environmental contaminants, such as perfluorinated alkyl substances (PFAS), contribute to the progression of non-alcoholic fatty liver disease (NAFLD). However, it is poorly understood how these chemicals impact human liver metabolism. Here we show that human exposure to PFAS impacts metabolic processes associated with NAFLD, and that the effect is different in females and males. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver.Peer reviewe

    Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease

    Get PDF
    Background & aimsRecent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of NAFLD. However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism.MethodsIn a well-characterized human NAFLD cohort of 105 individuals, we investigated the effects of EC exposure on liver metabolism. We characterized the liver (via biopsy) and circulating metabolomes using four mass spectrometry-based analytical platforms, and measured PFAS and other ECs in serum. We subsequently compared these results with an exposure study in a PPARα-humanized mouse model.ResultsPFAS exposure appears associated with perturbation of key hepatic metabolic pathways previously found altered in NAFLD, particularly as regards bile acid and lipid metabolism. We identified stronger associations between the liver metabolome, chemical exposure and NAFLD-associated clinical variables (liver fat content, HOMA-IR), in female subjects versus males. Specifically, we observed PFAS-associated up-regulation of bile acids, triacylglycerols and ceramides, and association between chemical exposure and dysregulated glucose metabolism in females. The murine exposure study further corroborated our findings, vis-à-vis a sex-specific association between PFAS exposure and NAFLD-associated lipid changes.ConclusionsFemales may be more sensitive to the harmful impacts of PFAS. Lipid-related changes subsequent to PFAS exposure may be secondary to the interplay between PFAS and bile acid metabolism.</p

    The Role of CaMKII in Calcium-Activated Death Pathways in Bone Marrow B Cells

    No full text
    Calcium is an essential signaling molecule in developing B cells, thus altering calcium dynamics represents a potential target for toxicant effects. GW7845, a tyrosine analog and potent peroxisome proliferator-activated receptor γ agonist, induces rapid mitogen-activated protein kinase (MAPK)–dependent apoptosis in bone marrow B cells. Changes in calcium dynamics are capable of mediating rapid initiation of cell death; therefore, we investigated the contribution of calcium to GW7845-induced apoptosis. Treatment of a nontransformed murine pro/pre-B cell line (BU-11) with GW7845 (40μM) resulted in intracellular calcium release. Multiple features of GW7845-induced cell death were suppressed by the calcium chelator BAPTA, including MAPK activation, loss of mitochondrial membrane potential, cytochrome c release, caspase-3 activation, and DNA fragmentation. A likely mechanism for the calcium-mediated effects is activation of CaMKII, a calcium-dependent MAP4K. We observed that three CaMKII isoforms (β, γ, and δ) are expressed in lymphoid tissues and bone marrow B cells. Treatment with GW7845 increased CaMKII activity. All features of GW7845-induced cell death, except loss of mitochondrial membrane potential, were suppressed by CaMKII inhibitors (KN93 and AIP-II), suggesting the activation of multiple calcium-driven pathways. To determine if CaMKII activation is a common feature of early B cell death following perturbation of Ca2+ flux, we dissected tributyltin (TBT)-induced death signaling. High-dose TBT (1μM) is known to activate calcium-dependent death. TBT induced rapid apoptosis that was associated with intracellular calcium release, CaMKII activation and MAPK activation, and was inhibited by AIP-II. Thus, we show that early B cells are susceptible to calcium-triggered cell death through a CaMKII/MAPK-dependent pathway

    Application of generalized concentration addition to predict mixture effects of glucocorticoid receptor ligands

    No full text
    Environmental exposures often occur in complex mixtures and at low concentrations. Generalized concentration addition (GCA) is a method used to estimate the joint effect of receptor ligands that vary in efficacy. GCA models have been successfully applied to mixtures of aryl hydrocarbon receptor (AhR) and peroxisome proliferator-activated receptor gamma (PPARÎł) ligands, each of which can be modeled as a receptor with a single binding site. Here, we evaluated whether GCA could be applied to homodimer nuclear receptors, which have two binding sites, to predict the combined effect of full glucocorticoid receptor (GR) agonists with partial agonists. We measured transcriptional activation of GR using a cell-based bioassay. Individual concentration-response curves for dexamethasone (full agonist), prednisolone (full agonist), and medroxyprogesterone 17-acetate (partial agonist) were generated and applied in three additivity models, GCA, effect summation (ES), and relative potency factor (RPF), to generate response surfaces. GCA and RPF yielded adequate predictions of the experimental data for two full agonists. However, GCA fit experimental data significantly better than ES and RPF for all other binary mixtures. This work extends the application of GCA to homodimer nuclear receptors and improves prediction accuracy of mixture effects of GR agonists
    corecore