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progression of non-alcoholic fatty
liver disease (NAFLD). However, it is
� Environmental contaminants may contribute to the initiation and
development of NAFLD.

� Exposure to PFAS is associated with the alteration of bile acid profiles
and NAFLD-related pathways in the human liver.

� Other lipid-related changes may be secondary to the interplay be-
tween PFAS and bile acid metabolism.

� Females may be more sensitive to the harmful impacts of PFAS
than males.
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Exposure to environmental contaminants is associated with altered
hepatic lipid metabolism in non-alcoholic fatty liver disease
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Background & aims: Recent experimental models and epide- Conclusions: Females may be more sensitive to the harmful

miological studies suggest that specific environmental contam-
inants (ECs) contribute to the initiation and pathology of non-
alcoholic fatty liver disease (NAFLD). However, the underlying
mechanisms linking EC exposure with NAFLD remain poorly
understood and there is no data on their impact on the human
liver metabolome. Herein, we hypothesized that exposure to ECs,
particularly perfluorinated alkyl substances (PFAS), impacts liver
metabolism, specifically bile acid metabolism.
Methods: In a well-characterized human NAFLD cohort of 105
individuals, we investigated the effects of EC exposure on liver
metabolism. We characterized the liver (via biopsy) and circu-
lating metabolomes using 4 mass spectrometry-based analytical
platforms, and measured PFAS and other ECs in serum. We
subsequently compared these results with an exposure study in
a PPARa-humanized mouse model.
Results: PFAS exposure appears associatedwith perturbation of key
hepatic metabolic pathways previously found altered in NAFLD,
particularly those related to bile acid and lipid metabolism. We
identified stronger associations between the liver metabolome,
chemical exposure and NAFLD-associated clinical variables (liver fat
content, HOMA-IR), in females thanmales. Specifically, we observed
PFAS-associated upregulation of bile acids, triacylglycerols and
ceramides, and association between chemical exposure and dysre-
gulated glucose metabolism in females. The murine exposure study
further corroborated ourfindings, vis-à-vis a sex-specific association
between PFAS exposure and NAFLD-associated lipid changes.
words: chemical exposure; exposome; perfluorinated alkyl substance; non-
holic steatohepatitis; fibrosis; bile acid; lipidome; metabolome; meta-
c pathway.
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impacts of PFAS. Lipid-related changes subsequent to PFAS
exposure may be secondary to the interplay between PFAS and
bile acid metabolism.
Lay summary: There is increasing evidence that specific envi-
ronmental contaminants, such as perfluorinated alkyl substances
(PFAS), contribute to the progression of non-alcoholic fatty liver
disease (NAFLD). However, it is poorly understood how these
chemicals impact human liver metabolism. Here we show that
human exposure to PFAS impacts metabolic processes associated
with NAFLD, and that the effect is different in females and males.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of Euro-
pean Association for the Study of the Liver. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).
Introduction
The liver plays a vital role in the maintenance of metabolic ho-
meostasis, whilst also being a key organ involved in the meta-
bolism, distribution, and excretion of exogenous chemicals. As
hepatocytes are exposed to a significant influx of various exog-
enous chemicals, chemical-induced hepatotoxicity is a world-
wide health concern. Indeed, hepatotoxicity is a common
endpoint in the risk assessment of many environmental con-
taminants (ECs), including endocrine-disrupting chem-
icals (EDCs).1

Recent data suggest that hepatic steatosis associates with
exposure to toxic EDCs.2,3 Exposure to persistent ECs may also
initiate and promote the pathogenesis of non-alcoholic fatty liver
disease (NAFLD).4,5 EDCs may act as a ‘second hit’ in the pro-
gression of NAFLD, driving the disease from an earlier, less severe
stage, such as steatosis, to the more severe stages such as non-
alcoholic steatohepatitis (NASH). Alternatively, exposures to
EDCs may also represent the ‘first hit’, which compromises the
liver’s protective responses against over-nutrition, predisposing
it to steatohepatitis following a subsequent ‘hit’ from a hyper-
caloric diet.3

A specific class of EDCs linked with NAFLD are perfluorinated
alkyl substances (PFAS). These are synthetic chemicals used for
022 vol. 76 j 283–293
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various industrial applications and in consumer products. As
PFAS are highly persistent in the environment, the general
population is widely exposed to these substances, mainly
through diet and contaminated water. In human epidemiological
and animal toxicology studies, PFAS exposure has been identified
as associated with a variety of adverse health outcomes.6 Based
on studies in experimental models, PFAS gradually accumulate in
the liver where they are highly hepatotoxic, interfering with
glucose and lipid metabolism, elevating liver enzymes, and
exacerbating the effect of a high intake of dietary fat.4 Whilst
there are some human studies linking PFAS exposure to changes
in the circulating metabolome,6 there are currently no data on
the impact of PFAS exposure on the human liver metabolome.

Due to the structural similarity between PFAS and fatty acids,
PFAS may disrupt hepatic lipid metabolism by interacting with
receptors such as peroxisome proliferator-activated receptors
(PPARs) and other nuclear receptors, including the constitutive
androstane receptor and the pregnane X receptor.7 PFAS may
also promote steatosis by upregulating lipogenesis and lipid
influx to the liver, whilst downregulating liver lipid efflux.3

Particularly, PFAS interfere with bile acid (BA) synthesis, and
several steps of their enterohepatic circulation.8,9 BAs are a
specific class of lipids synthesized in the liver from cholesterol,
with regulatory roles in metabolic and cellular homeostasis10;
BAs have been reported to be increased in the liver tissue,11,12

plasma,11,13,14 and feces13 of patients with NAFLD.
The conclusions from various human epidemiological studies

concerning the possible link between PFAS exposure and car-
diometabolic disorders (including NAFLD) remain inconsistent.15

A plausible explanation for these inconsistent findings is that the
epidemiological studies insufficiently account for individual
biological factors, including internal exposures, such as the
metabolome, which are likely to have a major impact on human
health.6 Sex differences also have generally not been sufficiently
accounted for in such studies. Sex has a major impact on lipid
(including BA) metabolism, with sex-based differences reported
in exposure studies in animal models.16,17

Herein, we hypothesized that exposure to ECs, including PFAS,
impact liver metabolism, specifically BA and lipid metabolism. In
a well-characterized human NAFLD cohort of 105 individuals,18

we investigated the impact of EC exposure on liver meta-
bolism. We characterized both liver (via biopsy) and circulating
metabolomes using 4 analytical platforms, and measured PFAS
and other ECs in serum. In order to elucidate any causal re-
lationships between PFAS exposure and specific metabolic
pathways, we subsequently compared these results with a
PPARa-humanized mouse model exposed to perfluorooctanoic
acid (PFOA), one of the most widely detected PFAS in humans.

Patients and methods
Study participants
A total of 105 patients (70 female, 35 male) were recruited from
those undergoing laparoscopic bariatric surgery. Patients were
eligible if they met the following criteria: i) age 18 to 75 years; ii)
no known acute or chronic disease except for obesity, type 2
diabetes or hypertension as assessed by medical history, physical
examination and standard laboratory tests (complete blood
count, serum creatinine, electrolyte concentrations); iii) alcohol
consumption <20 g per day for women and <30 g per day for
men; iv) no clinical or biochemical evidence of other liver dis-
ease, or clinical signs or symptoms of inborn errors of
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metabolism; v) no history of use of toxins or drugs associated
with liver steatosis. Elevated liver enzymes (alanine amino-
transferase [ALT] and aspartate aminotransferase [AST]) were not
exclusion criteria. Clinical measurements were performed as
reported previously18 (see also the supplementary methods).
Liver histology was analyzed by an experienced liver pathologist
(J.A.) in a blinded manner, as proposed by Brunt et al.19 Macro-
steatosis was assessed visually as the percentage of hepatocytes
occupied by macrovesicular lipid droplets (i.e., large intra-
cytoplasmic lipid droplets displacing the nucleus to the cell’s
periphery). Necroinflammatory activity was graded from 0 to 3
and fibrosis stage from 0 to 4.19

Murine exposure study
Data from this murine study were previously reported.20 A brief
summary is provided in the supplementary methods.

Analyses of metabolites and environmental contaminants
Multiple analytical protocols were used for analysis of metabo-
lites and ECs, as described in detail in the supplementary
methods and supplementary CTAT table; BAs and PFAS in
serum by ultra-high-performance liquid chromatography quad-
rupole time-of-flight mass spectrometry method (UHPLC-
QTOFMS), hepatic polar metabolites (two-dimensional gas
chromatography coupled to TOFMS; GC×GC–TOFMS), hepatic
molecular lipids (UHPLC-QTOFMS), hepatic acyl-carnitines
(UHPLC coupled to triple-quadrupole MS; UHPLC-QQQMS), he-
patic BAs (UHPLC-QQQMS).

Statistical analyses
All the metabolomics, lipidomics and the environmental toxins
(ECs) data were log2 transformed. Homogeneity of the samples
were assessed by principal component analysis.21 The R statis-
tical programming language (v.3.6.0)22 was used for data anal-
ysis. Statistical methods are described in detail in the
supplementary methods.

Results
Metabolic and chemical exposure profiles in the liver and
serum showed large biological variation
Patients in this study (n = 105) were obese (mean BMI = 46±6 kg/
m2) with a liver fat content between 0% to 80% (Tables S1 and
S2). We analyzed metabolic profiles in the liver, while the ECs
were measured only in serum due to the limited sample
amounts of human liver biopsies. However, PFAS levels in cir-
culation closely reflect concentrations in the liver.23

Polar metabolites such as free fatty acids and amino acids
involved in gluconeogenesis and central carbon metabolism,
were measured quantitatively, while molecular lipids were
measured semi-quantitatively using calibration by lipid class-
specific internal standards. Multiple classes of lipids, including
cholesterol esters, lysophosphatidylcholines (LPCs), lysophos-
phatidylethanolamines (LPEs), phosphatidylcholines (PCs),
phosphatidylethanolamines (PEs), sphingomyelins (SMs),
ceramides (Cers), and triacylglycerols (TGs) were measured in
the liver biopsies. We also determined levels of 34 BAs and 6
acyl-carnitines in the liver. Matching BAs were measured in
serum. In addition, we measured the metabolites used as an
index-marker of cholesterol biosynthesis (i.e., lathosterol, lath-
osterol to cholesterol ratio (L/C), mevalonic acid phosphate),
cholesterol absorption (campesterol), and BA intermediate
022 vol. 76 j 283–293



(3a,7a-Dihydroxy-5b-cholestanic acid, 7a-Hydroxy-3-oxo-4-
cholestenoic acid) involved in cholesterol-
mevalonate biosynthesis.24

We detected 5 PFAS in serum samples, namely per-
fluorohexanesulfonic acid (PFHxS), perfluorononanoic acid
(PFNA), PFOA and 2 isomers of perfluorooctanesulfonic acid
(PFOS) (Table S3) that were present at similar levels as previously
reported in Western countries.15,25 Additionally, we detected
methylparaben and bisphenol A (BPA) and a few other com-
pounds putatively classified as ECs. Factor analysis showed that
the concentrations of metabolites and EC levels were mainly
influenced by age, sex, and BMI (Fig. S1).

Environmental contaminants are associated with NAFLD
In order to study the associations between ECs and NAFLD, we
developed a gradient-boosted decision tree (GBDT) model.
SHapley Additive exPlanations (SHAP) values derived from these
GBDT models suggested that the serum concentrations of PFAS
such as PFOS, PFHxS, PFNA and PFOA were positively associated
with liver fat content (R2 = 0.79, Fig. 1A), and insulin resistance
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(IR) (HOMA-IR >2.5; R2 = 0.41; Fig. 1B). PFOS, PFOA, and meth-
ylparaben were positively associated with NASH (necroin-
flammatory grades 1-3 [n = 21] vs. 0 [n = 84] (Table S1); AUC 0.85
(95% CI 0.65–0.96) (Fig. 1C), while PFOS was positively associated
with hepatic fibrosis (stages 1-4 [n = 43] vs. 0 [n = 62] (Table S1);
AUC 0.58 (95% CI 0.37–0.77) (Fig. S2). The serum levels of PFOS,
PFHxS and PFNA were higher in male vs. female patients, while
methylparaben and BPAwere higher in females (Figs. 1D and 2A).

Several ECs were associated with hepatic macrosteatosis (%),
HOMA-IR, stage of NASH, and fibrosis (Fig. 2A-B). The levels of
PFOS were higher in females with NAFLD and IR (vs. without)
(Fig. 2A). Meanwhile, higher levels of methylparaben (adjusted
p = 0.02) were observed in males with NASH and hepatic fibrosis
(vs. without either) (Fig. 2A).
Association of environmental contaminants with BAs and
lipids are sex-specific
In order to identify EC-associated hepatic metabolites, we first
clustered the molecular lipids, polar metabolites and ECs using
model-based clustering (see Patients and methods), resulting in
B

R2 = 0.41

BPA
Methylparaben

EC12
PFOA

EC2
EC7

EC10
EC9
EC3
EC6

PFNA
EC4
EC5

EC11
PFHxS
PFOS

Sex vs. ECs

AUC(mean): 0.88
[95% CI: 0.70-0.98]

EC5
EC2

PFHxS
EC9
BPA

PFOS
EC6

PFOA
EC1

PFNA
EC12
EC10
EC3
EC4
EC7
EC8

Methylparaben
EC11

Directional mean (|SHAP|) values

D

HOMA-IR vs. ECs

-0.4 -0.2 0 0.2 0.4

Directional mean (|SHAP|) values
-0.2 -0.1 0 0.1 0.2

FLD. The directional mean |SHAP| values of ECs associated with NAFLD. (A) liver
The performances of regression and classification models are given as mean R-
5% CI). ECs, environmental contaminants; EC1, 2-(2,4-dichlorophenoxy) acetic
, C15H22N2O16P2; EC6, C8H16O2; EC7, C22H30N2O5S2; EC8, xanthen−9−one;
22O4; EC12, C21H32O2; NAFLD, non-alcoholic fatty liver disease; NASH, non-
nanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic acid.

022 vol. 76 j 283–293 285



A B

1
2

114

Liver macrofat
(with vs. without)

HOMA-IR
(high vs. low)

Fibrosis
vs.

Control

NASH
vs.

Control

Sex
(male vs. female)

EC12 
EC11 
EC9
EC7 
EC6 
EC5 
EC4 
EC3 
BPA
Methylparaben 
PFOA
PFNA
EC2
PFOS

EC2 = NDCA or NUDCA

EC3 = 3,4-Methylenesebacic acid 

EC4 = C23H26O6

EC5 = C15H22N2O16P2

EC6 = C8H16O2

EC7 = C22H30N2O5S2

EC9 = 2,6-dichloro-4-nitrophenol 

EC11 = C15H22O4

EC12 = C21H32O2

Se
x 

(m
al

e/
fe

m
al

e)

Methylparaben 
EC3
EC11
EC12

PFOS 
PFNA 
PFOA

EC5 
EC2 
EC6 
EC4 
EC7 
BPA 
EC9

* *
* *

*
*

*
* *

* *
* *

*
*

*
* * *
* * *

* *

* *

* *

* *
* *

Male Female

Li
ve

r m
ac

ro
fa

t (
w

ith
/w

ith
ou

t)

H
O

M
A-

IR
 (h

ig
h/

lo
w

)

H
O

M
A-

IR
 (h

ig
h/

lo
w

)

Fi
br

os
is

 v
s.

 c
on

tro
l

N
AS

H
 v

s.
 c

on
tro

l

Li
ve

r m
ac

ro
fa

t (
w

ith
/w

ith
ou

t)

Fi
br

os
is

 v
s.

 c
on

tro
l

N
AS

H
 v

s.
 c

on
tro

l* *
* *

* *

| 

Log2 (fold change)

*p.adj <0.1 **p.adj <0.05

-0.5 0.5 10-1

Fig. 2. Sex-specific differences in environmental contaminants linked to NAFLD. (A) Fold changes in serum levels of ECs in 2 different patient groups: liver
macrosteatosis (with [n = 28/51 males/female] vs. without [7/19]), HOMA-IR (high (>2.5) [25/41] vs. low [10/29]), hepatic fibrosis (stages 1-4 (fibrosis) [16/27] vs.
0 (control) [19/43]), NASH (necroinflammatory grades 1-3 (NASH) [10/11] vs. 0 (control) [25/59]), in patients. Welch’s t test, **p <0.05, *p <0.1, adjusted for FDR. (B)
Venn diagram showing ECs that were significantly altered between the patient groups. ECs, environmental contaminants; EC2, NDCA or NUDCA; EC3, 3,4-
Methylenesebacic acid; EC4, C23H26O6; EC5, C15H22N2O16P2; EC6, C8H16O2; EC7, C22H30N2O5S2; EC9, 2,6-dichloro-4-nitrophenol; EC10, 3-(4-
hydroxyphenyl) propanal; EC11, C15H22O4; EC12, C21H32O2; FDR, false discovery rate; HOMA-IR, homeostatic model assessment of insulin resistance;
NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFOS, per-
fluorooctanesulfonic acid.

Research Article NAFLD and Alcohol-Related Liver Diseases
24 distinct clusters (Table S4). These clusters contained serum
environmental chemicals (2 sECC), liver BA (5 lBA), serum BA (3
sBA), liver polar metabolite (5 lPM), and liver lipid (9 lLips)
clusters. Partial correlation analysis of these clusters, performed
separately for males (Fig. 3A) and females (Fig. 3B), revealed
markedly different correlation networks between the sexes
(Fig. 3). The EC clusters in both males and females were linked to
BA clusters (lBA2 and sBA1) (Fig. 3C), including positive associ-
ation between sECC1 and sBA1 (CA, 7-oxo-DCA, DCA, HCA,
HDCA, UDCA) and inverse association with lBA2 (GCA, GCDCA,
TCA, TCDCA) (Fig. 3A-B). In males, the EC clusters were linked to
lLips2 (Cers, hexosylceramides [HexCers], SMs, PCs, PEs, LPCs and
LPEs) while in females they were associated with lLips5 (TGs and
diacylglycerols [DGs]) and IPM3 (tricarboxylic acid cycle and its
metabolites) (Table S4). In females, lLips5 was positively associ-
ated with liver fat content and NASH (Fig. 3B).

We performed a bivariate correlation analysis which linked
various species of metabolites that made up the clusters
(lBA2,4,5; sBA1; lLips2,5 and IPM3), with the sECC (Fig. 3 and
Table S4). In females, serum concentrations of PFAS (PFNA, PFOA
and PFOS) were positively associated with glyco- and tauro-
conjugated primary hepatic BAs (TCA, GCDCA, TCDCA). In addi-
tion, PFOA was positively associated with multiple secondary
hepatic BAs (DCA, GHCA and GUDCA) (Fig. 4). Furthermore, PFOA
and PFOS were positively associated with Cers, e.g., Cer(d18:0/
16:0), and HexCers, e.g., HexCer(d18:1/18:0), ether phospho-
lipids, e.g., O-PC(40:4), TGs and DGs (Fig. 4). Interestingly, no
286 Journal of Hepatology 2
such association was observed in males. On the other hand, in
males, levels of methylparaben and BPA were positively associ-
ated with Cers, HexCers and SMs (Fig. 4).

Next, we investigated the impact of menopause on the PFAS
and metabolites (Fig. S3) using 2 age groups (<48 years and >52
years), corresponding to the menopausal transition window for
most females,26 with male patients as a control group to discern
sex-specific differences. The total PFAS levels were increased (p
<0.05) while levels of hepatic BAs were decreased (p = 0.02), and
the levels of circulating BA remained unchanged in the post- (vs.
pre-) menopausal female group. In males, circulating BAs were
elevated (p = 0.007) while other lipids were decreased (p =
0.0002), compared to the preceding age group.

Environmental contaminants are associated with
interconversion of serum BAs
We investigated the associations between ECs and specific BA
ratios indicative of NAFLD and NASH, i.e., ratio between primary
BAs and the secondary BAs derived from them (unconjugated
and conjugated [CA+DCA]/[CDCA+LCA]), the ratio increasing in
NAFLD and NASH.14 Significant (adjusted p <0.05) inverse asso-
ciations between serum (CA+DCA)/(CDCA+LCA) ratio and PFNA
were identified in males in both controls and patients with
NASH, and also between methylparaben, and BPA in males with
NASH (Fig. S4). However, in females, positive associations be-
tween the BA serum ratio and PFOA and PFOS were observed in
controls, whilst female patients with NASH showed an inverse
022 vol. 76 j 283–293
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association between serum BA ratio and PFHxS. Overall, the as-
sociations between PFAS and BA ratios were markedly different
between controls and NASH groups (Fig. S4). In males with he-
patic fibrosis, but not females, PFOA was positively associated
with (CA+DCA)/(CDCA+LCA) ratio (Fig. S5). Intriguingly, a posi-
tive correlation was observed between the liver and serum levels
of secondary BAs in females (Fig. S6).

Association of PFAS with the lathosterol to cholesterol (L/C)
ratio; a marker of cholesterol biosynthesis
Serum L/C ratio is an index of cholesterol biosynthesis.24 Higher
L/C ratios were found in females vs. males both in liver and
serum (Fig. S7). In males, serum L/C ratio was positively associ-
ated (adjusted p <0.05) with PFOA and negatively associated with
total liver BAs, particularly CDCAs (Fig. S7). This indicates an
increased level of PFOA may elevate L/C ratios, potentially
impacting liver cholesterol and primary BA biosynthesis. No such
Journal of Hepatology 2
associations were found in females. Instead, liver L/C ratio was
positively associated (adjusted p <0.05) with PFHxS (Fig. S7).
Moreover, a BA intermediate from the acidic/alternative
pathway27 was negatively associated with PFOS and PFHxS
in females.

Overrepresentation of liver metabolic pathways due to
chemical exposure
Pathway analysis identified multiple hepatic metabolic pathways
as overrepresented in the high exposure groups (Fig. 5A-B). In
both sexes, primary BA biosynthesis, glycerophospholipid
metabolism, along with alanine, aspartate and glutamate meta-
bolism were overrepresented (Fig. 5A-B). Sphingolipid meta-
bolism pathways were overrepresented in highly exposed
females (Fig. 5B). Overrepresentation of primary BA biosynthesis
pathways was associated with IR in both sexes. Furthermore, the
glycerophospholipid metabolism pathway was overrepresented
022 vol. 76 j 283–293 287
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=

in patients of both sexes with high macrosteatosis and increasing
stages of fibrosis (Fig. 5).
Hepatic metabolic alterations in humanized PPARa mice with
PFOA treatment
Here, we conducted an exposure study using a humanized PPARa
(hPPARa) mouse model. We sought to confirm the aforemen-
tioned hepatic sex-specific metabolic changes as linked to
chemical exposure. Of note, hPPARa mice are susceptible to he-
patic steatosis.28 Male and female hPPARa mice were provided
vehicle (VH, 0.5% sucrose) or PFOA (8 lM) in their drinking water
ad libitum for 6-7 weeks and fed a Western-type diet.

Hepatic lipids and serum BAs were measured in 2 groups
(PFOA and VH). Intriguingly, several species of lipids (Cers,
HexCers, SMs, LPCs, LPEs, DGs and TGs) and BAs (CA, DCA and
TCA) that were positively associated with PFAS (including PFOA)
exposure in the liver of female patients, were also elevated in
female mice administered PFOA (vs. VH) (Figs. 4 and 6).
Furthermore, the majority of these lipids were elevated in pa-
tients with high liver fat (Fig. 6). Thus, the animal model sup-
ported our findings, suggesting that exposure to ECs dysregulates
glycoursodeoxycholic acid; HexCer, hexosylceramide; lBA, liver bile acid; lPM, li
tidylethanolamine; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid; P
SMs, sphingomyelin; TbMCA, tauro-b-muricholic acid; TCA, taurocholic acid; TCD
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host lipid metabolism by altering the levels of BAs, Cers, phos-
pholipids and TGs, which, in turn, may exacerbate the risk and
severity of NAFLD.
Discussion
By integrating data on biopsy-based, histologically characterized
NAFLD, environmental chemical exposure and the human liver
metabolome, we were able to demonstrate that circulating PFAS
concentrations are associated with perturbations in key hepatic
metabolic pathways previously found altered in NAFLD/NASH,
particularly BA metabolism. Specifically, we identified stronger
associations between the liver metabolome, chemical exposure
and NAFLD-associated clinical variables in females vs. males. Our
murine exposure study further corroborated our findings, vis-à-
vis the association between PFAS exposure and NAFLD-
associated lipid changes. Our results suggest that females may
be more sensitive to chemical exposure than males, a notion that
is in line with findings from other exposure studies both in an-
imal models20,29 and human studies.30,31 Specifically, elevated
liver enzymes were found associated with PFAS exposure only in
adolescent females, with opposite results in males.30 Also a
ver polar metabolite; lLips, liver lipids; PC, phosphatidylcholine; PE, phospha-
FOS, perfluorooctanesulfonic acid; sBA, serum bile acid; sECC, serum EC cluster;
CA, taurochenodeoxycholic acid; TG, triacylglycerol.
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recent murine study reported a higher propensity for females to
develop PFAS-induced hepatic toxicity.29

In females, PFAS exposure was associated with increased
levels of several hepatic lipids associated with NAFLD (BAs, TGs
and Cers), while, surprisingly, the opposite associations were
observed in males, suggesting a potentially protective effect of
PFAS via the liver lipidome at these relatively low PFAS exposure
levels. Hormesis, i.e, a non-monotonic dose response that results
in protective effects at low doses of specific chemical exposures,
has been reported in several epidemiological studies, however,
the mechanism has not yet been characterized, nor identified to
be sex-specific.32,33 Indeed, in males, we observed suppression of
BAs due to PFAS exposure, as indicated by the negative correla-
tion of primary BAs and PFAS, and hardly any association be-
tween exposure and the liver lipidome. Overall, the results in
290 Journal of Hepatology 2
males are in line with literature concerning the impact of PFAS in
BA metabolism reported in animal models and in vivo studies,
demonstrating that PFAS exposure suppresses de novo BA syn-
thesis through the primary pathway via suppression of choles-
terol 7a-hydroxylase (CYP7A1),34 which controls the first, rate-
limiting step in the formation of BAs from cholesterol. The sup-
pression of CYP7A1 would result in downregulation of the pri-
mary BAs (CA,CDCA), as also observed in our study in males.
Since part of the CDCA pool can also be synthesized via an
alternative pathway regulated by CYP27A135 which is hardly
affected by PFAS, the CA/CDCA ratio would be expected to
decrease with higher PFAS exposure. Indeed, in males we
observed decreased CA/CDCA ratios upon high PFAS exposure,
indicative of suppression of the primary BA synthesis pathway,
but with no impact on the alternative pathway. In females,
however, the CA/CDCA ratio was not significantly associated with
PFAS levels, while PFAS were positively associated with primary
BAs and 2 conjugates of the secondary BA UDCA, thus indicating
increased as opposed to decreased BA synthesis. This is poten-
tially due to the reported higher expression of CYP7A1 and
PPARa in the livers of females,36 supported also by rodent
models showing that females appear to be more sensitive to
PFOS exposure than males.20

In males, positive association between PFOS and serum L/C
ratio suggests that PFAS are associated with cholesterol biosyn-
thesis. In females, the liver L/C ratio was positively associated
with PFAS. It was associated with the increased levels of BAs
(particularly in serum) and negatively associated with choles-
terol levels both in serum and liver, suggesting an increased flux
from cholesterol to BAs in females. Moreover, cholesterol ab-
sorption might be suppressed by PFAS in females, suggested by
the negative association between campesterol and PFNA. This
could also contribute to decreased cholesterol levels in the fe-
male liver. Together, our data indicate that PFAS exposure
distinctly impacts cholesterol biosynthesis and/or absorption in
males and females. However, the exact mechanisms behind
these phenomena remain to be elucidated by functional studies.

The sexually dimorphic character of the liver may explain
some changes observed not only in overall metabolism but also
in xenobiotic metabolism, drug response and susceptibility to
toxic effects.37,38 Cholesterol metabolism is more active in fe-
males than in males,39 with estrogen playing a key role in the
regulation of hepatic lipid synthesis.40 Sex-specific differences in
glucose homeostasis have also been reported41 while PFAS have,
in in vivomodels, been shown to have an estrogen-like activity.42

Estrogen, and estrogenic effects, are widely known to have a
protective effect against hepatic fat accumulation especially in
males.43 Alongside the biphasic, hormetic response to PFAS
exposure, this represents a plausible explanation for the pro-
tective effects of the PFAS exposure we observed in the males of
our study.

In females, serum BAs positively associated with PFAS expo-
sure were also linked with glucose metabolism, indicating that
PFAS may disrupt the interplay of BA and glucose metabolism. In
males, we did not observe associations between ECs and glucose
metabolism. In females, PFAS and several BAs in serum were
positively associated with HOMA-IR, and importantly, the 12a-
hydroxylated BAs (CA, DCA, and their conjugates) were associ-
ated with both FPG and HOMA-IR. Increased 12a-hydroxylated
BAs have been reported in IR44 with increased primary and total
BAs reflecting IR in patients with NASH,45 which is in agreement
022 vol. 76 j 283–293



with our findings in females. The serum ratio of specific BAs
([CA + DCA]/[CDCA + LCA]), used as a surrogate for changes in BA
biosynthesis, was associated with several ECs in females, further
indicating disturbances in BA metabolism. This increased BA
ratio has also been reported in patients with IR and hepatic
steatosis,14 which may explain the link we observed between
PFAS and glucose metabolism. Interestingly, this specific BA ratio
was different in both females and males with low or high NASH/
fibrosis scores. In more severe stages of liver disease, the PFAS-
BA associations were similar for both sexes. Pathway analysis
further showed that glycerophospholipid metabolism was over-
represented in the liver of both males and females in the
advanced stages of NAFLD, suggesting that these metabolic
pathways could be a common denominator contributing to the
increased risk of NAFLD by chemical exposure.

The changes in BAs were more likely to be linked with PFAS
exposure than NAFLD per se, as we did not observe any signifi-
cant increases in hepatic BAs in NAFLD, except for weak associ-
ations (elevated LCA, downregulated TMCA) in females. While
elevated levels of BAs in NAFLD have been reported,46 some of
the results may be linked with obesity rather than NAFLD/NASH
due to a significant difference in the BMI of controls vs. patients
with NAFLD in many studies45 and as elevated BA concentrations
have been reported in obese patients without NAFLD.47 In our
study, all patients, including those with normal liver fat, were
obese (BMI >30), thus allowing us to control for the effect of BMI.

The comparison of our human data with those from the
mouse model showed that in females, similar lipid changes were
triggered in mice (male and female) due to PFOA exposure.
However, in human females, the changes did not always reach
statistical significance, most likely due to lower exposure levels
than used in the mouse model or due to the differences in es-
trogen levels in human females due to their age distribution
(29–60 years). Importantly, the PFOA-induced changes in mice
showed a strong association with those lipids that, in humans,
were associated with liver fat in both males and females, and
with glucose homeostasis in females, thus supporting the notion
that PFAS exposure may contribute to the development of
NAFLD. Our results also showed that glucose homeostasis is
linked with PFAS exposure in females but not in males, a finding
that demands further investigation, along with addressing the
effect of menopause on glucose homeostasis.

A particular strength of our study is that it is based on a
comprehensive metabolic characterization of both liver and
serum in a well-characterized human cohort, including assess-
ment of NAFLD stages and severity, based on liver biopsy, with
key results further verified in a murine exposure study. There are
also some limitations, including that we did not have data on the
hormonal status of the females, or data regarding hormone
replacement therapy in postmenopausal females. Moreover, due
to the cross-sectional study design, the temporal relationship
between PFAS and lipids may not be fully representable. Overall,
our results suggest that females may be more sensitive to the
harmful impacts of PFAS, even at lower PFAS exposure levels. The
results also suggest that the changes reported in lipid meta-
bolism subsequent to PFAS exposure may be secondary to the
interplay of PFAS and BAs.
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