9 research outputs found

    The Musicality of Non-Musicians: An Index for Assessing Musical Sophistication in the General Population

    Get PDF
    Musical skills and expertise vary greatly in Western societies. Individuals can differ in their repertoire of musical behaviours as well as in the level of skill they display for any single musical behaviour. The types of musical behaviours we refer to here are broad, ranging from performance on an instrument and listening expertise, to the ability to employ music in functional settings or to communicate about music. In this paper, we first describe the concept of ‘musical sophistication’ which can be used to describe the multi-faceted nature of musical expertise. Next, we develop a novel measurement instrument, the Goldsmiths Musical Sophistication Index (Gold-MSI) to assess self-reported musical skills and behaviours on multiple dimensions in the general population using a large Internet sample (n = 147,636). Thirdly, we report results from several lab studies, demonstrating that the Gold-MSI possesses good psychometric properties, and that self-reported musical sophistication is associated with performance on two listening tasks. Finally, we identify occupation, occupational status, age, gender, and wealth as the main socio-demographic factors associated with musical sophistication. Results are discussed in terms of theoretical accounts of implicit and statistical music learning and with regard to social conditions of sophisticated musical engagement

    Conservation of fragmented grasslands as part of the urban green infrastructure: how important are species diversity, functional diversity and landscape functionality?

    No full text
    Natural remnants, such as fragmented grasslands form an integral part of the urban green infrastructure in the Grassland biome of South Africa. Nearly 30 % of natural grasslands are transformed with only 1 % formally conserved. Since grassland habitats are globally regarded as a biodiversity conservation priority, protection should be accorded outside formal conservation areas as well. However, urban grassland fragments are often regarded as highly transformed, and are therefore targeted for development rather than conservation. The aim of this study was to compare plant species composition, −diversity and -functional diversity, as well as the fine-scale biophysical landscape functionality of grassland fragments in urban and exurban areas in the vulnerable Rand Highveld Grassland vegetation type in the Tlokwe Municipal area of South Africa. Thirty selected grassland fragments were investigated along an urbanisation (urban-exurban) gradient that was quantified using several demographic- and physical variables as well as landscape metrics, each reflecting a pattern or process associated with urbanisation. Plant species composition, −diversity, and -life history traits were determined in randomly selected sample plots. Functional diversity indices were also calculated to describe the composition and distribution of plant functional traits in the selected grassland fragments. Additionally, landscape functionality, in terms of how effectively the landscape is functioning as a biophysical system, was determined using the Landscape Function Analysis (LFA) method. LFA provides information such as fine-scale resource conserving patchiness, soil surface stability, infiltration, and nutrient cycling. The fine-scale biophysical landscape function of urban and exurban landscapes are comparable, indicating that urban grassland fragments are worthy of conservation on a biophysical landscape function scale. However, differences in plant species diversity, functional trait composition, and plant functional diversity were evident

    Conservation of fragmented grasslands as part of the urban green infrastructure: how important are species diversity, functional diversity and landscape functionality?

    No full text

    PHENIX detector overview

    No full text
    The PHENIX detector is designed to perform a broad study of A-A, p-A, and p-p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented. (C) 2002 Elsevier Science B.V. All rights reserved
    corecore