442 research outputs found

    Gamma-ray bursts and terrestrial planetary atmospheres

    Full text link
    We describe results of modeling the effects on Earth-like planets of long-duration gamma-ray bursts (GRBs) within a few kiloparsecs. A primary effect is generation of nitrogen oxide compounds which deplete ozone. Ozone depletion leads to an increase in solar UVB radiation at the surface, enhancing DNA damage, particularly in marine microorganisms such as phytoplankton. In addition, we expect increased atmospheric opacity due to buildup of nitrogen dioxide produced by the burst and enhanced precipitation of nitric acid. We review here previous work on this subject and discuss recent developments, including further discussion of our estimates of the rates of impacting GRBs and the possible role of short-duration bursts.Comment: 12 pages including 5 figures (4 in color). Added discussion of GRB rates and biological effects. Accepted for publication in New Journal of Physics, for special issue "Focus on Gamma-Ray Bursts

    The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis

    Get PDF
    Mycobacterium tuberculosis (M.tb) survives in macrophages in part by limiting phagosome–lysosome (P-L) fusion. M.tb mannose-capped lipoarabinomannan (ManLAM) blocks phagosome maturation. The pattern recognition mannose receptor (MR) binds to the ManLAM mannose caps and mediates phagocytosis of bacilli by human macrophages. Using quantitative electron and confocal microscopy, we report that engagement of the MR by ManLAM during the phagocytic process is a key step in limiting P-L fusion. P-L fusion of ManLAM microspheres was significantly reduced in human macrophages and an MR-expressing cell line but not in monocytes that lack the receptor. Moreover, reversal of P-L fusion inhibition occurred with MR blockade. Inhibition of P-L fusion did not occur with entry via Fcγ receptors or dendritic cell–specific intracellular adhesion molecule 3 grabbing nonintegrin, or with phosphatidylinositol-capped lipoarabinomannan. The ManLAM mannose cap structures were necessary in limiting P-L fusion, and the intact molecule was required to maintain this phenotype. Finally, MR blockade during phagocytosis of virulent M.tb led to a reversal of P-L fusion inhibition in human macrophages (84.0 ± 5.1% vs. 38.6 ± 0.6%). Thus, engagement of the MR by ManLAM during the phagocytic process directs M.tb to its initial phagosomal niche, thereby enhancing survival in human macrophages

    No Far-Infrared-Spectroscopic Gap in Clean and Dirty High-TC_C Superconductors

    Full text link
    We report far infrared transmission measurements on single crystal samples derived from Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8}. The impurity scattering rate of the samples was varied by electron-beam irradiation, 50MeV 16^{16}O+6^{+6} ion irradiation, heat treatment in vacuum, and Y doping. Although substantial changes in the infrared spectra were produced, in no case was a feature observed that could be associated with the superconducting energy gap. These results all but rule out ``clean limit'' explanations for the absence of the spectroscopic gap in this material, and provide evidence that the superconductivity in Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} is gapless.Comment: 4 pages and 3 postscript figures attached. REVTEX v3.0. Accepted for publication in Phys. Rev. Lett. IRDIRT

    Strength of Higher-Order Spin-Orbit Resonances

    Full text link
    When polarized particles are accelerated in a synchrotron, the spin precession can be periodically driven by Fourier components of the electromagnetic fields through which the particles travel. This leads to resonant perturbations when the spin-precession frequency is close to a linear combination of the orbital frequencies. When such resonance conditions are crossed, partial depolarization or spin flip can occur. The amount of polarization that survives after resonance crossing is a function of the resonance strength and the crossing speed. This function is commonly called the Froissart-Stora formula. It is very useful for predicting the amount of polarization after an acceleration cycle of a synchrotron or for computing the required speed of the acceleration cycle to maintain a required amount of polarization. However, the resonance strength could in general only be computed for first-order resonances and for synchrotron sidebands. When Siberian Snakes adjust the spin tune to be 1/2, as is required for high energy accelerators, first-order resonances do not appear and higher-order resonances become dominant. Here we will introduce the strength of a higher-order spin-orbit resonance, and also present an efficient method of computing it. Several tracking examples will show that the so computed resonance strength can indeed be used in the Froissart-Stora formula. HERA-p is used for these examples which demonstrate that our results are very relevant for existing accelerators.Comment: 10 pages, 6 figure

    Spectral evolution in (Ca,Sr)RuO_3 near the Mott-Hubbard transition

    Full text link
    We investigated the optical properties of (Ca,Sr)RuO_3 films on the borderline of a metal-insulator (M-I) transition. Our results show all of the predicted characteristics for a metallic Mott-Hubbard system, including (i) a mass enhancement in dc-limit, (ii) an U/2 excitation, and (iii) an U excitation. Also, a self-consistency is found within the Gutzwiller-Brinkman-Rice picture for the Mott transition. Our finding displays that electron correlation should be important even in 4d materials.Comment: REVTEX 4 pages, 5 EPS figures, submitted to Phys. Rev. Let

    The GALAH survey: accurate radial velocities and library of observed stellar template spectra

    Get PDF
    GALAH is a large-scale magnitude-limited southern stellar spectroscopic survey. Its second data release (GALAH DR2) provides values of stellar parameters and abundances of 23 elements for 342 682 stars (Buder et al.). Here we add a description of the public release of radial velocities with a typical accuracy of 0.1 km s−1 for 336 215 of these stars, achievable due to the large wavelength coverage, high resolving power, and good signal-to-noise ratio of the observed spectra, but also because convective motions in stellar atmosphere and gravitational redshift from the star to the observer are taken into account. In the process we derive medians of observed spectra that are nearly noiseless, as they are obtained from between 100 and 1116 observed spectra belonging to the same bin with a width of 50 K in temperature, 0.2 dex in gravity, and 0.1 dex in metallicity. Publicly released 1181 median spectra have a resolving power of 28 000 and trace the well-populated stellar types with metallicities between −0.6 and +0.3. Note that radial velocities from GALAH are an excellent match to the accuracy of velocity components along the sky plane derived by Gaia for the same stars. The level of accuracy achieved here is adequate for studies of dynamics within stellar clusters, associations, and streams in the Galaxy. So it may be relevant for studies of the distribution of dark matter.TZ, GT, and KC acknowledge financial support of ˇ the Slovenian Research Agency (research core funding No. P1-0188 and project N1-0040). TZ acknowledges the grant from the distinguished visitor programme of the RSAA at the Australian National University. JK is supported by a Discovery Project grant from the Australian Research Council (DP150104667) awarded to J. BlandHawthorn and T. Bedding. ARC acknowledges support through the Australian Research Council through grant DP160100637. LD, KF, and Y-ST are grateful for support from Australian Research Council grant DP160103747. SLM acknowledges support from the Australian Research Council through grant DE140100598. LC is the recipient of an ARC Future Fellowship (project number FT160100402). Parts of this research were conducted by the Australian Research Council Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE17010001

    Optical conductivity of the nonsuperconducting cuprate La(8-x)Sr(x)Cu(8)O(20)

    Full text link
    La(8-x)Sr(x)Cu(8)O(20) is a non-superconducting cuprate, which exhibits a doubling of the elementary cell along the c axis. Its optical conductivity sigma (omega) has been first measured here, down to 20 K, in two single crystals with x = 1.56 and x = 2.24. Along c, sigma (omega) shows, in both samples, bands due to strongly bound charges, thus confirming that the cell doubling is due to charge ordering. In the ab plane, in addition to the Drude term one observes an infrared peak at 0.1 eV and a midinfrared band at 0.7 eV. The 0.1 eV peak hardens considerably below 200 K, in correspondence of an anomalous increase in the sample dc resistivity, in agreement with its polaronic origin. This study allows one to establish relevant similarities and differences with respect to the spectrum of the ab plane of the superconducting cuprates.Comment: Revised version submitted to Phys. Rev. B, including the elimination of Fig. 1 and changes to Figs. 4 and

    The GALAH Survey: Chemical tagging and chrono-chemodynamics of accreted halo stars with GALAH+ DR3 and GaiaGaia eDR3

    Get PDF
    © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab3504Since the advent of GaiaGaia astrometry, it is possible to identify massive accreted systems within the Galaxy through their unique dynamical signatures. One such system, GaiaGaia-Sausage-Enceladus (GSE), appears to be an early "building block" given its virial mass >1010 M⊙> 10^{10}\,\mathrm{M_\odot} at infall (z∼1−3z\sim1-3). In order to separate the progenitor population from the background stars, we investigate its chemical properties with up to 30 element abundances from the GALAH+ Survey Data Release 3 (DR3). To inform our choice of elements for purely chemically selecting accreted stars, we analyse 4164 stars with low-α\alpha abundances and halo kinematics. These are most different to the Milky Way stars for abundances of Mg, Si, Na, Al, Mn, Fe, Ni, and Cu. Based on the significance of abundance differences and detection rates, we apply Gaussian mixture models to various element abundance combinations. We find the most populated and least contaminated component, which we confirm to represent GSE, contains 1049 stars selected via [Na/Fe] vs. [Mg/Mn] in GALAH+ DR3. We provide tables of our selections and report the chrono-chemodynamical properties (age, chemistry, and dynamics). Through a previously reported clean dynamical selection of GSE stars, including 30<JR / kpc km s−1<5530 < \sqrt{J_R~/~\mathrm{kpc\,km\,s^{-1}}} < 55, we can characterise an unprecedented 24 abundances of this structure with GALAH+ DR3. Our chemical selection allows us to prevent circular reasoning and characterise the dynamical properties of the GSE, for example mean JR / kpc km s−1=26−14+9\sqrt{J_R~/~\mathrm{kpc\,km\,s^{-1}}} = 26_{-14}^{+9}. We find only (29±1)%(29\pm1)\% of the GSE stars within the clean dynamical selection region. Our methodology will improve future studies of accreted structures and their importance for the formation of the Milky Way.Peer reviewedFinal Accepted Versio

    Influences of club connectedness among young adults in Western Australian community-based sports clubs

    Get PDF
    Background: Along with physical benefits, community-based sport provides opportunities to enhance connectedness, an important protective factor of social and emotional health. However, young Australians participating in sport have been found to drink alcohol at higher levels than their non-sporting peers, and many clubs serve unhealthy food and beverages. This study explored the association between the dependent variable, level of alcohol consumption (AUDIT-C) and connectedness to club and other health behaviours among young people aged 18-30 years who play club sport in Western Australia. Methods: An online cross sectional survey measured levels of alcohol consumption (AUDIT-C), alcohol-related harm, connectedness (including volunteering and team cohesion), mental wellbeing, healthy food options and club sponsorship among young adults aged 18-30 years involved in sports clubs in Western Australia (n = 242). Relationships and association between the dependent variable (AUDIT-C) and independent variables were assessed. Results: Male sportspeople were more likely to drink alcohol at high-risk levels than females (p <.001), and respondents belonging to a club that received alcohol-related sponsorship were more likely to drink at high-risk levels (p =.019). Females were significantly more likely to want healthy food and beverage options provided at their clubs (p = 0.011). When all factors were considered team cohesion (p = 0.02), alcohol expectations (p = <.001), occurrences of experienced alcohol-related harm (p = <.001) and length of club membership (p = 0.18) were significant predictors of high-risk AUDIT-C (R 2 =.34, adjusted R 2 =.33, F (4, 156) = 20.43, p = <.001). High-risk AUDIT-C and club connectedness predicted strong team cohesion (R 2 =.39, adjusted R 2 =.39, F (2, 166) = 53.74, p = <.001). Conclusions: Findings from this study may inform policy and practice to enhance healthy behaviours among young adults participating in community sports clubs in Australia and other countries

    The GALAH survey: Co-orbiting stars and chemical tagging

    Full text link
    We present a study using the second data release of the GALAH survey of stellar parameters and elemental abundances of 15 pairs of stars identified by Oh et al 2017. They identified these pairs as potentially co-moving pairs using proper motions and parallaxes from Gaia DR1. We find that 11 very wide (>1.7 pc) pairs of stars do in fact have similar Galactic orbits, while a further four claimed co-moving pairs are not truly co-orbiting. Eight of the 11 co-orbiting pairs have reliable stellar parameters and abundances, and we find that three of those are quite similar in their abundance patterns, while five have significant [Fe/H] differences. For the latter, this indicates that they could be co-orbiting because of the general dynamical coldness of the thin disc, or perhaps resonances induced by the Galaxy, rather than a shared formation site. Stars such as these, wide binaries, debris of past star formation episodes, and coincidental co-orbiters, are crucial for exploring the limits of chemical tagging in the Milky Way.Comment: 14 pages, 9 figures, submitted to MNRAS. Updated for Gaia DR2 value
    • …
    corecore