31 research outputs found

    400 Years of summer hydroclimate from stable isotopes in Iberian trees.

    Get PDF
    Tree rings are natural archives that annually record distinct types of past climate variability depending on the parameters measured. Here, we use ring-width and stable isotopes in cellulose of trees from the northwestern Iberian Peninsula (IP) to understand regional summer hydroclimate over the last 400 years and the associated atmospheric patterns. Correlations between tree rings and climate data demonstrate that isotope signatures in the targeted Iberian pine forests are very sensitive to water availability during the summer period, and are mainly controlled by stomatal conductance. Non-linear methods based on extreme events analysis allow for capturing distinct seasonal climatic variability recorded by tree-ring parameters and asymmetric signals of the associated atmospheric features. Moreover, years with extreme high (low) values in the tree-ring records were characterised by coherent large-scale atmospheric circulation patterns with reduced (enhanced) moisture transport onto the northwestern IP. These analyses of extremes revealed that high/low proxy values do not necessarily correspond to mirror images in the atmospheric anomaly patterns, suggesting different drivers of these patterns and the corresponding signature recorded in the proxies. Regional hydroclimate features across the broader IP and western Europe during extreme wet/dry summers detected by the northwestern IP trees compare favourably to independent multicentury sea level pressure and drought reconstructions for Europe. Historical records also validate our findings that attribute non-linear moisture signals recorded by extreme tree-ring values to distinct large-scale atmospheric patterns and allow for 400-year reconstructions of the frequency of occurrence of extreme conditions in late spring and summer hydroclimate

    Environmental factors controlling soil respiration in three semiarid ecosystems

    Get PDF
    Previous research suggests that soil organic C pools may be a feature of semiarid regions that are particularly sensitive to climatic changes. We instituted an 18-mo experiment along an elevation gradient in northern Arizona to evaluate the influence of temperature, moisture, and soil C pool size on soil respiration. Soils, from underneath different free canopy types and interspaces of three semiarid ecosystems, were moved upslope and/or downslope to modify soil climate. Soils moved downslope experienced increased temperature and decreased precipitation, resulting in decreased soil moisture and soil respiration las much as 23 acid 20%, respectively). Soils moved upslope to more mesic, cooler sites had greater soil water content and increased rates of soil respiration las much as 40%), despite decreased temperature. Soil respiration rates normalized for total C were not significantly different within any of the three incubation sites, indicating that under identical climatic conditions, soil respiration is directly related to soil C pool size for the incubated soils. Normalized soil respiration rates between sites differed significantly for all soil types and were always greater for soils incubated under more mesic, but cooler, conditions. Total soil C did not change significantly during the experiment, but estimates suggest that significant portions of the rapidly cycling C pool were lost. While long-term decreases in aboveground and belowground detrital inputs may ultimately be greater than decreased soil respiration, the initial response to increased temperature and decreased precipitation in these systems is a decrease in annual soil C efflux

    Consequences of larch budmonth outbreaks on the chlimate significance of ring width and stable isotopes of larch

    No full text
    Tree-ring widths and stable carbon and oxygen isotopes of five European larch trees from Lotschental, Switzerland were investigated for the period 1900-2004. The objective was to test the suitability of each of these parameters for high-frequency climate reconstructions. This is of special interest with regard to the problem of cyclic larch budmoth (LBM) infestations of alpine larch trees. The results clearly demonstrate that tree-ring width chronologies are not suitable for high-frequency reconstructions because infestations lead to variably reduced tree-ring increments, largely suppressing climate signals. On the other hand, the stable isotope chronologies proved less affected by larch budmoth outbreaks, independent of the strength of the infestations. The correlation of the carbon isotopes with summer temperatures was especially high (r = 0.73) and with precipitation lower but nevertheless significant (r = -0.43). Oxygen isotopes were also correlated with summer temperature (r = 0.46); however, a certain perturbation of normal oxygen isotope signatures due to LBM outbreaks was evident. Contrary to tree-ring widths, none of the LBM outbreaks caused a significant disturbance of the current year's isotopic climate signal and, most importantly, there were no delayed effects in the following years. Thus, stable carbon isotopes in tree-ring chronologies of the European larch provide an excellent opportunity for high-frequency temperature reconstructions

    Beyond CO2-fixation by Rubisco - an interpretation of 13C/12C variations in tree rings from novel intraseasonal studies on broad-leaf trees

    No full text
    Evidence is presented for a very specific, seasonally recurring tri-phase carbon isotope pattern in tree rings of broad-leaf deciduous tree species. It is derived from highly resolved intra-annual measurements of 13C/12C ratios of wood and cellulose from tree rings of Fagus sylvatica, Populus nigra, Quercus petraea and Morus alba. Investigations on δ13C from buds and leaves of Fagus sylvatica revealed a similar tri-phase δ13C pattern. At the very beginning of a growing season, the δ13C trend of tree rings and foliage shows a marked increase of up to 5‰. The maximum δ13C-value of each vegetation period always occurs in young heterotrophic leaves shortly after bud burst and persistently in the early wood of each tree ring, when growth depends on carbon reserves. Thereafter, δ13C profiles represent the autotrophic stage of the leaves, which show different patterns of variation, by and large characterized by a decline. The minimum δ13C-value always shows up in the late wood of each tree ring. At the very end of each tree ring δ13C-values start rising again. This increase in δ13C marks the gradual switch-over to storage-dependent growth and can also be observed in senescent leaves. Seasonal changes of more than 4‰ were measured, whereas contiguous δ13C values rarely differed from each other by more than 0.3‰. This tri-phase pattern cannot be explained by the common model of carbon isotope fractionation during photosynthesis. It appears to be primarily an indication of seasonal changes in down-stream processes of the carbohydrate metabolism. Environmental influences on the carbon isotope fractionation during photosynthesis are presumably of secondary importance and expressed by certain peculiarities showing up during the autotrophic phase, i.e. the mid-section of the seasonal δ13C pattern

    Die Hochtemperaturzelle HTZ Ein neues Verfahren zur Extraktion von Sauerstoffisotopen aus biogenen Silikaten

    No full text
    SIGLEAvailable from TIB Hannover: RA 831(4010) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore