86 research outputs found

    Ancestral bias in the Hras1 gene and distal Chromosome 7 among inbred mice

    Get PDF
    Inbred strains of mice vary in their frequency of liver tumors initiated by a mutation in the Hras1 (H-ras) proto-oncogene. We sequenced 4.5 kb of the Hras1 gene on distal Chr 7 in a diverse set of 12 commonly used laboratory inbred strains of mice and detected no sequence variation to account for strain-specific differences in Hras1 mutation prevalence. Furthermore, the Hras1 sequence is essentially monoallelic for an ancestral gene derived from the M. m. domesticus species. To determine if the monoallelism and associated low rate of polymorphism are unique to Hras1 or representative of the general chromosomal locale, we extended the sequence analysis to 12 genes in the final 8 Mb of distal Chr 7. A region of at least 2.5 Mb that encompasses several genes, including Hras1 and the H19/Igf2 loci, demonstrates virtually no sequence variation. The 12 inbred strains share one dominant haplotype derived from the M. m. domesticus allele. Chromosomal regions flanking the monoallelic segment exhibit a significantly higher rate of variation and multiple haplotypes, a majority of which are attributed to M. m. domesticus or M. m. musculus ancestry

    Adaptive Evolution of a Stress Response Protein

    Get PDF
    Some cancers are mediated by an interplay between tissue damage, pathogens and localised innate immune responses, but the mechanisms that underlie these linkages are only beginning to be unravelled.Here we identify a strong signature of adaptive evolution on the DNA sequence of the mammalian stress response gene SEP53, a member of the epidermal differentiation complex fused-gene family known for its role in suppressing cancers. The SEP53 gene appears to have been subject to adaptive evolution of a type that is commonly (though not exclusively) associated with coevolutionary arms races. A similar pattern of molecular evolution was not evident in the p53 cancer-suppressing gene.Our data thus raises the possibility that SEP53 is a component of the mucosal/epithelial innate immune response engaged in an ongoing interaction with a pathogen. Although the pathogenic stress mediating adaptive evolution of SEP53 is not known, there are a number of well-known candidates, in particular viruses with established links to carcinoma

    Successive Increases in the Resistance of Drosophila to Viral Infection through a Transposon Insertion Followed by a Duplication

    Get PDF
    To understand the molecular basis of how hosts evolve resistance to their parasites, we have investigated the genes that cause variation in the susceptibility of Drosophila melanogaster to viral infection. Using a host-specific pathogen of D. melanogaster called the sigma virus (Rhabdoviridae), we mapped a major-effect polymorphism to a region containing two paralogous genes called CHKov1 and CHKov2. In a panel of inbred fly lines, we found that a transposable element insertion in the protein coding sequence of CHKov1 is associated with increased resistance to infection. Previous research has shown that this insertion results in a truncated messenger RNA that encodes a far shorter protein than the susceptible allele. This resistant allele has rapidly increased in frequency under directional selection and is now the commonest form of the gene in natural populations. Using genetic mapping and site-specific recombination, we identified a third genotype with considerably greater resistance that is currently rare in the wild. In these flies there have been two duplications, resulting in three copies of both the truncated allele of CHKov1 and CHKov2 (one of which is also truncated). Remarkably, the truncated allele of CHKov1 has previously been found to confer resistance to organophosphate insecticides. As estimates of the age of this allele predate the use of insecticides, it is likely that this allele initially functioned as a defence against viruses and fortuitously “pre-adapted” flies to insecticides. These results demonstrate that strong selection by parasites for increased host resistance can result in major genetic changes and rapid shifts in allele frequencies; and, contrary to the prevailing view that resistance to pathogens can be a costly trait to evolve, the pleiotropic effects of these changes can have unexpected benefits

    High Hemocyte Load Is Associated with Increased Resistance against Parasitoids in Drosophila suzukii, a Relative of D. melanogaster

    Get PDF
    Among the most common parasites of Drosophila in nature are parasitoid wasps, which lay their eggs in fly larvae and pupae. D. melanogaster larvae can mount a cellular immune response against wasp eggs, but female wasps inject venom along with their eggs to block this immune response. Genetic variation in flies for immune resistance against wasps and genetic variation in wasps for virulence against flies largely determines the outcome of any fly-wasp interaction. Interestingly, up to 90% of the variation in fly resistance against wasp parasitism has been linked to a very simple mechanism: flies with increased constitutive blood cell (hemocyte) production are more resistant. However, this relationship has not been tested for Drosophila hosts outside of the melanogaster subgroup, nor has it been tested across a diversity of parasitoid wasp species and strains. We compared hemocyte levels in two fly species from different subgroups, D. melanogaster and D. suzukii, and found that D. suzukii constitutively produces up to five times more hemocytes than D. melanogaster. Using a panel of 24 parasitoid wasp strains representing fifteen species, four families, and multiple virulence strategies, we found that D. suzukii was significantly more resistant to wasp parasitism than D. melanogaster. Thus, our data suggest that the relationship between hemocyte production and wasp resistance is general. However, at least one sympatric wasp species was a highly successful infector of D. suzukii, suggesting specialists can overcome the general resistance afforded to hosts by excessive hemocyte production. Given that D. suzukii is an emerging agricultural pest, identification of the few parasitoid wasps that successfully infect D. suzukii may have value for biocontrol

    Contrasting Patterns of Transposable Element Insertions in Drosophila Heat-Shock Promoters

    Get PDF
    The proximal promoter regions of heat-shock genes harbor a remarkable number of P transposable element (TE) insertions relative to both positive and negative control proximal promoter regions in natural populations of Drosophila melanogaster. We have screened the sequenced genomes of 12 species of Drosophila to test whether this pattern is unique to these populations. In the 12 species' genomes, transposable element insertions are no more abundant in promoter regions of single-copy heat-shock genes than in promoters with similar or dissimilar architecture. Also, insertions appear randomly distributed across the promoter region, whereas insertions clustered near the transcription start site in promoters of single-copy heat-shock genes in D. melanogaster natural populations. Hsp70 promoters exhibit more TE insertions per promoter than all other genesets in the 12 species, similarly to in natural populations of D. melanogaster. Insertions in the Hsp70 promoter region, however, cluster away from the transcription start site in the 12 species, but near it in natural populations of D. melanogaster. These results suggest that D. melanogaster heat-shock promoters are unique in terms of their interaction with transposable elements, and confirm that Hsp70 promoters are distinctive in TE insertions across Drosophila

    Patterns of Selection in Anti-Malarial Immune Genes in Malaria Vectors: Evidence for Adaptive Evolution in LRIM1 in Anopheles arabiensis

    Get PDF
    Co-evolution between Plasmodium species and its vectors may result in adaptive changes in genes that are crucial components of the vector's defense against the pathogen. By analyzing which genes show evidence of positive selection in malaria vectors, but not in closely related non-vectors, we can identify genes that are crucial for the mosquito's resistance against Plasmodium.We investigated genetic variation of three anti-malarial genes; CEC1, GNBP-B1 and LRIM1, in both vector and non-vector species of the Anopheles gambiae complex. Whereas little protein differentiation was observed between species in CEC1 and GNBP-B1, McDonald-Kreitman and maximum likelihood tests of positive selection show that LRIM1 underwent adaptive evolution in a primary malaria vector; An. arabiensis. In particular, two adjacent codons show clear signs of adaptation by having accumulated three out of four replacement substitutions. Furthermore, our data indicate that this LRIM1 allele has introgressed from An. arabiensis into the other main malaria vector An. gambiae.Although no evidence exists to link the adaptation of LRIM1 to P. falciparum infection, an adaptive response of a known anti-malarial gene in a primary malaria vector is intriguing, and may suggest that this gene could play a role in Plasmodium resistance in An. arabiensis. If so, our data also predicts that LRIM1 alleles in An. gambiae vary in their level of resistance against P. falciparum

    Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control

    Get PDF
    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the `resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistanceassociated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised

    Low linkage disequilibrium in wild Anopheles gambiae s.l. populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the malaria vector <it>Anopheles gambiae</it>, understanding diversity in natural populations and genetic components of important phenotypes such as resistance to malaria infection is crucial for developing new malaria transmission blocking strategies. The design and interpretation of many studies here depends critically on Linkage disequilibrium (LD). For example in association studies, LD determines the density of Single Nucleotide Polymorphisms (SNPs) to be genotyped to represent the majority of the genomic information. Here, we aim to determine LD in wild <it>An. gambiae s.l</it>. populations in 4 genes potentially involved in mosquito immune responses against pathogens (<it>Gambicin</it>, <it>NOS</it>, <it>REL2 </it>and <it>FBN9</it>) using previously published and newly generated sequences.</p> <p>Results</p> <p>The level of LD between SNP pairs in cloned sequences of each gene was determined for 7 species (or incipient species) of the <it>An. gambiae </it>complex. In all tested genes and species, LD between SNPs was low: even at short distances (< 200 bp), most SNP pairs gave an r<sup>2 </sup>< 0.3. Mean r<sup>2 </sup>ranged from 0.073 to 0.766. In most genes and species LD decayed very rapidly with increasing inter-marker distance.</p> <p>Conclusions</p> <p>These results are of great interest for the development of large scale polymorphism studies, as LD generally falls below any useful limit. It indicates that very fine scale SNP detection will be required to give an overall view of genome-wide polymorphism. Perhaps a more feasible approach to genome wide association studies is to use targeted approaches using candidate gene selection to detect association to phenotypes of interest.</p

    Spiroplasma Bacteria Enhance Survival of Drosophila hydei Attacked by the Parasitic Wasp Leptopilina heterotoma

    Get PDF
    Maternally-transmitted associations between endosymbiotic bacteria and insects are ubiquitous. While many of these associations are obligate and mutually beneficial, many are facultative, and the mechanism(s) by which these microbes persist in their host lineages remain elusive. Inherited microbes with imperfect transmission are expected to be lost from their host lineages if no other mechanisms increase their persistence (i.e., host reproductive manipulation and/or fitness benefits to host). Indeed numerous facultative heritable endosymbionts are reproductive manipulators. Nevertheless, many do not manipulate reproduction, so they are expected to confer fitness benefits to their hosts, as has been shown in several studies that report defense against natural enemies, tolerance to environmental stress, and increased fecundity.We examined whether larval to adult survival of Drosophila hydei against attack by a common parasitoid wasp (Leptopilina heterotoma), differed between uninfected flies and flies that were artificially infected with Spiroplasma, a heritable endosymbiont of Drosophila hydei that does not appear to manipulate host reproduction. Survival was significantly greater for Spiroplasma-infected flies, and the effect of Spiroplasma infection was most evident during the host's pupal stage. We examined whether or not increased survival of Spiroplasma-infected flies was due to reduced oviposition by the wasp (i.e., pre-oviposition mechanism). The number of wasp eggs per fly larva did not differ significantly between Spiroplasma-free and Spiroplasma-infected fly larvae, suggesting that differential fly survival is due to a post-oviposition mechanism.Our results suggest that Spiroplasma confers protection to D. hydei against wasp parasitism. This is to our knowledge the first report of a potential defensive mutualism in the genus Spiroplasma. Whether it explains the persistence and high abundance of this strain in natural populations of D. hydei, as well as the widespread distribution of heritable Spiroplasma in Drosophila and other arthropods, remains to be investigated
    corecore