4,919 research outputs found

    Single-spin asymmetries in the leptoproduction of transversely polarized Λ\Lambda hyperons

    Get PDF
    We analyze single-spin asymmetries (SSAs) in the leptoproduction of transversely polarized Λ\Lambda hyperons within the collinear twist-3 formalism. We calculate both the distribution and fragmentation terms in two different gauges (lightcone and Feynman) and show that the results are identical. This is the first time that the fragmentation piece has been analyzed for transversely polarized hadron production within the collinear twist-3 framework. In lightcone gauge we use the same techniques that were employed in computing the analogous piece in p↑p→π Xp^\uparrow p\to \pi\,X, which has become an important part to that reaction. With this in mind, we also verify the gauge invariance of the formulas for the transverse SSA in the leptoproduction of pions.Comment: 12 pages, 1 figure, reference added, version to appear in Phys. Lett.

    Longitudinal-transverse double-spin asymmetries in single-inclusive leptoproduction of hadrons

    Get PDF
    We analyze the longitudinal-transverse double-spin asymmetry in lepton-nucleon collisions where a single hadron is detected in the final state, i.e., ℓ⃗ N↑→h X\vec{\ell}\,N^\uparrow \rightarrow h\,X. This is a subleading-twist observable in collinear factorization, and we look at twist-3 effects in both the transversely polarized nucleon and the unpolarized outgoing hadron. Results are anticipated for this asymmetry from both HERMES and Jefferson Lab Hall A, and it could be measured as well at COMPASS and a future Electron-Ion Collider. We also perform a numerical study of the distribution term, which, when compared to upcoming experimental results, could allow one to learn about the "worm-gear"-type function g~(x)\tilde{g}(x) as well as assess the role of quark-gluon-quark correlations in the initial-state nucleon and twist-3 effects in the fragmenting unpolarized hadron.Comment: 14 pages, 7 figures, minor changes to the text, version to appear in Phys. Lett.

    Twist-2 Generalized TMDs and the Spin/Orbital Structure of the Nucleon

    Full text link
    Generalized transverse-momentum dependent parton distributions (GTMDs) encode the most general parton structure of hadrons. Here we focus on two twist-2 GTMDs which are denoted by F1,4F_{1,4} and G1,1G_{1,1} in parts of the literature. As already shown previously, both GTMDs have a close relation to orbital angular momentum of partons inside a hadron. However, recently even the mere existence of F1,4F_{1,4} and G1,1G_{1,1} has been doubted. We explain why this claim does not hold. We support our model-independent considerations by calculating the two GTMDs in the scalar diquark model and in the quark-target model, where we also explicitly check the relation to orbital angular momentum. In addition, we compute F1,4F_{1,4} and G1,1G_{1,1} at large transverse momentum in perturbative Quantum Chromodynamics and show that they are nonzero.Comment: 29 pages, 6 figures; two clarifications and a reference added; version to appear in Phys. Rev.

    Geomagnetic storm effects at F1-layer heights from incoherent scatter observations

    No full text
    International audienceStorm effects at F1-layer heights (160?200 km) were analyzed for the first time using Millstone Hill (mid-latitudes) and EISCAT (auroral zone) incoherent scatter (IS) observations. The morphological study has shown both increases (positive effect) and decreases (negative effect) in electron concentration. Negative storm effects prevail for all seasons and show a larger magnitude than positive ones, the magnitude of the effect normally increasing with height. At Millstone Hill the summer storm effects are small compared to other seasons, but they are well detectable. At EISCAT this summer decrease takes place only with respect to the autumnal period and the autumn/spring asymmetry in the storm effects is well pronounced. Direct and significant correlation exists between deviations in electron concentration at the F1-layer heights and in the F2-layer maximum. Unlike the F2-layer the F1-region demonstrates a relatively small reaction to geomagnetic disturbances despite large perturbations in thermospheric parameters. Aeronomic parameters extracted from IS observations are used to explain the revealed morphology. A competition between atomic and molecular ion contributions to Ne variations was found to be the main physical mechanism controlling the F1-layer storm effect. The revealed morphology is shown to be related with neutral composition (O, O2, N2) seasonal and storm-time variations. The present day understanding of the F1-region formation mechanisms is sufficient to explain the observed storm effects

    Radar backscatter from plasma irregularities of the lower E region induced by neutral turbulence

    Get PDF
    • …
    corecore