1,798 research outputs found

    Computing Macro-Effects and Welfare Costs of Temperature Volatility: A Structural Approach

    Get PDF
    We produce novel empirical evidence on the relevance of temperature volatility shocks for the dynamics of productivity, macroeconomic aggregates and asset prices. Using two centuries of UK temperature data, we document that the relationship between temperature volatility and the macroeconomy varies over time. First, the sign of the causality from temperature volatility to TFP growth is negative in the post-war period (i.e., 1950–2015) and positive before (i.e., 1800–1950). Second, over the pre-1950 (post-1950) period temperature volatility shocks positively (negatively) affect TFP growth. In the post-1950 period, temperature volatility shocks are also found to undermine equity valuations and other main macroeconomic aggregates. More importantly, temperature volatility shocks are priced in the cross section of returns and command a positive premium. We rationalize these findings within a production economy featuring long-run productivity and temperature volatility risk. In the model temperature volatility shocks generate non-negligible welfare costs. Such costs decrease (increase) when coupled with immediate technology adaptation (capital depreciation)

    Electronic spectra of polyatomic molecules with resolved individual rotational transitions

    Get PDF
    The density of rotational transitions for a polyatomic molecule is so large that in general many such transitions are hidden under the Doppler profile, this being a fundamental limit of conventional high resolution electronic spectroscopy. We present here the first Doppler-free cw two-photon spectrum of a polyatomic molecule. In the case of benzene, 400 lines are observed of which 300 are due to single rotational transitions, their spacing being weil below the Doppler profile. The resolution so achieved is 1.5 X 10'. Benzene is a prototype planar molecule taken to have D •• symmetry in the ground as weil as in the first excited state. From our ultra-high resolution results it is found that benzene in the excited SI state i8 a symmetrical rotor to a high degree. A negative inertial defect is found for the excited state. The origin of this inertial defect is discused

    Global dynamics above the ground state for the nonlinear Klein-Gordon equation without a radial assumption

    Full text link
    We extend our previous result on the focusing cubic Klein-Gordon equation in three dimensions to the non-radial case, giving a complete classification of global dynamics of all solutions with energy at most slightly above that of the ground state.Comment: 40 page

    Ketamine treatment for depression: opportunities for clinical innovation and ethical foresight

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.We present a review and analysis of the ethical considerations in off-label ketamine use for severe, treatment-resistant depression. The analysis of ethical considerations is contextualised in an overview of the evidence for ketamine use in depression, and a review of the drug's safety profile. We find that, based on current evidence, ketamine use for severe, treatment-resistant depression does not violate ethical principles; however, clinicians and professional bodies must take steps to ensure that guidelines for good practice are enacted, that all experimental and trial data are made available through national registries, and that the risk potential of ketamine treatment continues to be monitored and modelled. We conclude with a set of key recommendations for oversight bodies that would support safe, effective, and ethical use of ketamine in depression

    Memetic Multilevel Hypergraph Partitioning

    Full text link
    Hypergraph partitioning has a wide range of important applications such as VLSI design or scientific computing. With focus on solution quality, we develop the first multilevel memetic algorithm to tackle the problem. Key components of our contribution are new effective multilevel recombination and mutation operations that provide a large amount of diversity. We perform a wide range of experiments on a benchmark set containing instances from application areas such VLSI, SAT solving, social networks, and scientific computing. Compared to the state-of-the-art hypergraph partitioning tools hMetis, PaToH, and KaHyPar, our new algorithm computes the best result on almost all instances

    A network model to investigate structural and electrical properties of proteins

    Full text link
    One of the main trend in to date research and development is the miniaturization of electronic devices. In this perspective, integrated nanodevices based on proteins or biomolecules are attracting a major interest. In fact, it has been shown that proteins like bacteriorhodopsin and azurin, manifest electrical properties which are promising for the development of active components in the field of molecular electronics. Here we focus on two relevant kinds of proteins: The bovine rhodopsin, prototype of GPCR protein, and the enzyme acetylcholinesterase (AChE), whose inhibition is one of the most qualified treatments of Alzheimer disease. Both these proteins exert their functioning starting with a conformational change of their native structure. Our guess is that such a change should be accompanied with a detectable variation of their electrical properties. To investigate this conjecture, we present an impedance network model of proteins, able to estimate the different electrical response associated with the different configurations. The model resolution of the electrical response is found able to monitor the structure and the conformational change of the given protein. In this respect, rhodopsin exhibits a better differential response than AChE. This result gives room to different interpretations of the degree of conformational change and in particular supports a recent hypothesis on the existence of a mixed state already in the native configuration of the protein.Comment: 25 pages, 12 figure

    Back to the roots of "channel three"

    Get PDF
    Rotationally resolved fluorescence excitation and resonance enhanced multiphoton ionization (MPI) spectra of the 610130 one-photon band of benzene at the onset of ``channel three'' are reported. The fluorescence decay is monitored after rotationally selected excitation and a large variation of the nonradiative decay time (<1 to 6.8 ns) is found for the different rotational states at the vibrational excess energy of 3287 cm−1 in S1. The rotational structure of the fluorescence excitation spectrum and the MPI spectrum measured with delayed laser pulses differ considerably. All observed lines of the MPI spectrum were assigned and the rotational line structure can only be understood with a model which incorporates interference between different decay channels. Due to this interference, particular rotational states decay fairly slowly and give rise to lines in the spectrum while states with neighboring rotational quantum numbers decay rapidly and are therefore not found in the spectrum. The previously reported drastic increase of the electronic, nonradiative decay of benzene in this region of excess energy, which led to the postulation of ``channel three,'' cannot be confirmed. Instead, the optically excited rovibronic states are thought to be coupled to background states within S1 which are themselves broadened due to strong coupling to the highly excited S0 electronic state rather than due to an unknown (``channel three'') or isomerization process. The Journal of Chemical Physics is copyrighted by The American Institute of Physics
    • …
    corecore