70 research outputs found

    Hydrodynamical simulations of colliding jets:modeling 3C 75

    Get PDF
    Radio observations suggest that 3C 75, located in the dumbbell shaped galaxy NGC 1128 at the center of Abell 400, hosts two colliding jets. Motivated by this source, we perform three-dimensional hydrodynamical simulations using a modified version of the GPU-accelerated Adaptive-MEsh-Refinement hydrodynamical parallel code (GAMER\mathit{GAMER}) to study colliding extragalactic jets. We find that colliding jets can be cast into two categories: 1) bouncing jets, in which case the jets bounce off each other keeping their identities, and 2) merging jets, when only one jet emerges from the collision. Under some conditions the interaction causes the jets to break up into oscillating filaments of opposite helicity, with consequences for their downstream stability. When one jet is significantly faster than the other and the impact parameter is small, the jets merge; the faster jet takes over the slower one. In the case of merging jets, the oscillations of the filaments, in projection, may show a feature which resembles a double helix, similar to the radio image of 3C 75. Thus we interpret the morphology of 3C 75 as a consequence of the collision of two jets with distinctly different speeds at a small impact parameter, with the faster jet breaking up into two oscillating filaments.Comment: 13 pages, 9 figures, accepted for publication in Ap

    Analysing Astronomy Algorithms for GPUs and Beyond

    Full text link
    Astronomy depends on ever increasing computing power. Processor clock-rates have plateaued, and increased performance is now appearing in the form of additional processor cores on a single chip. This poses significant challenges to the astronomy software community. Graphics Processing Units (GPUs), now capable of general-purpose computation, exemplify both the difficult learning-curve and the significant speedups exhibited by massively-parallel hardware architectures. We present a generalised approach to tackling this paradigm shift, based on the analysis of algorithms. We describe a small collection of foundation algorithms relevant to astronomy and explain how they may be used to ease the transition to massively-parallel computing architectures. We demonstrate the effectiveness of our approach by applying it to four well-known astronomy problems: Hogbom CLEAN, inverse ray-shooting for gravitational lensing, pulsar dedispersion and volume rendering. Algorithms with well-defined memory access patterns and high arithmetic intensity stand to receive the greatest performance boost from massively-parallel architectures, while those that involve a significant amount of decision-making may struggle to take advantage of the available processing power.Comment: 10 pages, 3 figures, accepted for publication in MNRA

    The Schro¨\ddot{o}dinger-Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics

    Get PDF
    In this paper it is argued how the dynamics of the classical Newtonian N-body system can be described in terms of the Schro¨\ddot{o}dinger-Poisson equations in the large NN limit. This result is based on the stochastic quantization introduced by Nelson, and on the Calogero conjecture. According to the Calogero conjecture, the emerging effective Planck constant is computed in terms of the parameters of the N-body system as M5/3G1/2(N/)1/6\hbar \sim M^{5/3} G^{1/2} (N/)^{1/6}, where is GG the gravitational constant, NN and MM are the number and the mass of the bodies, and is their average density. The relevance of this result in the context of large scale structure formation is discussed. In particular, this finding gives a further argument in support of the validity of the Schro¨\ddot{o}dinger method as numerical double of the N-body simulations of dark matter dynamics at large cosmological scales.Comment: Accepted for publication in the Euro. Phys. J.

    PyCOOL - a Cosmological Object-Oriented Lattice code written in Python

    Full text link
    There are a number of different phenomena in the early universe that have to be studied numerically with lattice simulations. This paper presents a graphics processing unit (GPU) accelerated Python program called PyCOOL that solves the evolution of scalar fields in a lattice with very precise symplectic integrators. The program has been written with the intention to hit a sweet spot of speed, accuracy and user friendliness. This has been achieved by using the Python language with the PyCUDA interface to make a program that is easy to adapt to different scalar field models. In this paper we derive the symplectic dynamics that govern the evolution of the system and then present the implementation of the program in Python and PyCUDA. The functionality of the program is tested in a chaotic inflation preheating model, a single field oscillon case and in a supersymmetric curvaton model which leads to Q-ball production. We have also compared the performance of a consumer graphics card to a professional Tesla compute card in these simulations. We find that the program is not only accurate but also very fast. To further increase the usefulness of the program we have equipped it with numerous post-processing functions that provide useful information about the cosmological model. These include various spectra and statistics of the fields. The program can be additionally used to calculate the generated curvature perturbation. The program is publicly available under GNU General Public License at https://github.com/jtksai/PyCOOL . Some additional information can be found from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/ .Comment: 23 pages, 12 figures; some typos correcte

    Scalability of Incompressible Flow Computations on Multi-GPU Clusters Using Dual-Level and Tri-Level Parallelism

    Get PDF
    High performance computing using graphics processing units (GPUs) is gaining popularity in the scientific computing field, with many large compute clusters being augmented with multiple GPUs in each node. We investigate hybrid tri-level (MPI-OpenMP-CUDA) parallel implementations to explore the efficiency and scalability of incompressible flow computations on GPU clusters up to 128 GPUS. This work details some of the unique issues faced when merging fine-grain parallelism on the GPU using CUDA with coarse-grain parallelism using OpenMP for intra-node and MPI for inter-node communication. Comparisons between the tri-level MPI-OpenMP-CUDA and dual-level MPI-CUDA implementations are shown using computationally large computational fluid dynamics (CFD) simulations. Our results demonstrate that a tri-level parallel implementation does not provide a significant advantage in performance over the dual-level implementation, however further research is needed to justify our conclusion for a cluster with a high GPU per node density or when using software that can utilize OpenMP’s fine-grain parallelism more effectively

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Cytomegalovirus-specific immunoglobulin G is associated with chronic lung disease in children and adolescents from sub-Saharan Africa living with perinatal human immunodeficiency virus

    No full text
    In a cross-sectional study of 296 children and adolescents from Zimbabwe living with perinatal human immunodeficiency virus, individuals with the top tertile of cytomegalovirus-specific immunoglobulin G titer had an increased odds of chronic lung disease (odds ratio, 3.33; 95% confidence interval, 1.37–8.85; P = .010)
    corecore