20 research outputs found

    A population-based study of inflammatory mechanisms and pain sensitivity

    Get PDF
    This is a non-final version of an article published in final form in Schistad, E. I., Kong, X. Y., Furberg, A.-S., Bäckryd, E., Grimnes, G., Emaus, N., ... Nielsen, C. S. (2019). A population-based study of inflammatory mechanisms and pain sensitivity. Pain, 161(2), 338-350. https://doi.org/10.1097/j.pain.0000000000001731Two recent studies suggest that experimental pain sensitivity is associated with low-grade systemic inflammation. However, only 2 biomarkers have been identified, and the studies were conducted in adult individuals where confounding effects of comorbid diseases cannot be excluded. We therefore tested associations between pain sensitivity and 119 inflammation-related serum biomarkers in 827 healthy adolescents (15-19 years) in the population-based Tromsø Study: Fit Futures. The main outcome measure was cold-pressor pain tolerance (CPT), tested by placing the dominant hand in circulating cold (3°C) water for a maximum of 105 seconds. Secondary outcomes were heat and pressure pain threshold and tolerance. Twelve proteins and 6 fatty acids were significantly associated with CPT after adjustment for possible confounding factors and correction for multiple comparisons. Of these, all fatty acids and 10 proteins were protective, ie, higher biomarkers levels were associated with increased CPT, whereas 2 biomarkers were associated with lower tolerance. Taken together, these biomarkers predicted completion of the tolerance test with a C-statistic of 0.65. Results for heat and pressure pain tolerance were remarkably similar, strengthening the generalizability of our findings. In this cohort of young healthy individuals, we found a relationship between inflammation-related biomarkers and pain tolerance and thresholds. Biomarkers with anti-inflammatory and analgesic effects predominated, suggesting that the development of prophylactic dietary or pharmaceutical treatments may be possible

    Correlation between gene expression and MRI STIR signals in patients with chronic low back pain and Modic changes indicates immune involvement

    Get PDF
    Disability and distress caused by chronic low back pain (LBP) lacking clear pathoanatomical explanations cause huge problems both for patients and society. A subgroup of patients has Modic changes (MC), identifiable by MRI as vertebral bone marrow lesions. The cause of such changes and their relationship to pain are not yet understood. We explored the pathobiology of these lesions using profiling of gene expression in blood, coupled with an edema-sensitive MRI technique known as short tau inversion recovery (STIR) imaging. STIR images and total RNA from blood were collected from 96 patients with chronic LBP and MC type I, the most inflammatory MC state. We found the expression of 37 genes significantly associated with STIR signal volume, ten genes with edema abundancy (a constructed combination of STIR signal volume, height, and intensity), and one gene with expression levels significantly associated with maximum STIR signal intensity. Gene sets related to interferon signaling, mitochondrial metabolism and defense response to virus were identified as significantly enriched among the upregulated genes in all three analyses. Our results point to inflammation and immunological defense as important players in MC biology in patients with chronic LBP.publishedVersio

    Persistent lumbar radicular and low back pain; impact of genetic variability versus emotional distress

    No full text
    Objective: Earlier studies documenting the effect of candidate genes on recovery have seldom taken into consideration the impact of emotional distress. Thus, we aimed to assess the modifying effect of emotional distress on genetic variability as a predictor for pain recovery in lumbar radicular (LRP) and low back pain (LBP). Results: The study population comprised 201 patients and mean age was 41.7 years. The significant association between MMP9 rs17576 (B = 0.71, 95% CI 0.18 to 1.24, p = 0.009) and pain recovery remained statistically significant after adjusting for pain intensity at baseline, age, gender, smoking, body mass index, pain localization and emotional distress (B = 0.68, 95% CI 0.18 to 1.18, p = 0.008). In contrast, the association between OPRM1 (B = − 0.85, 95% CI − 1.66 to − 0.05, p = 0.038) and pain recovery was abolished in the multivariate analysis (B = − 0.72, 95% CI − 1.46 to 0.02, p = 0.058). Hence, MMP9 rs17576 and emotional distress independently seem to predict persistent back pain. The predictive effect of OPRM1 rs179971 with regard to the same outcome is probably dependent on other factors including emotional processing

    Genes associated with persistent lumbar radicular pain; a systematic review

    Get PDF
    Background The aim of the present study was to provide an overview of the literature addressing the role of genetic factors and biomarkers predicting pain recovery in newly diagnosed lumbar radicular pain (LRP) patients. Methods The search was performed in Medline OVID, Embase, PsycInfo and Web of Science (2004 to 2015). Only prospective studies of patients with LRP addressing the role of genetic factors (genetic susceptibility) and pain biomarkers (proteins in serum) were included. Two independent reviewers extracted the data and assessed methodological quality. Results The search identified 880 citations of which 15 fulfilled the inclusion criteria. Five genetic variants; i.e., OPRM1 rs1799971 G allele, COMT rs4680 G allele, MMP1 rs1799750 2G allele, IL1α rs1800587 T allele, IL1RN rs2234677 A allele, were associated with reduced recovery of LRP. Three biomarkers; i.e., TNFα, IL6 and IFNα, were associated with persistent LRP. Conclusion The present results indicate that several genetic factors and biomarkers may predict slow recovery in LRP. Still, there is a need for replication of the findings. A stricter use of nomenclature is also highly necessary. Trial registration The review is registered PROSPERO 20th of November 2015. Registration number is CRD42015029125

    Macrophage migration inhibitory factor: A potential biomarker for chronic low back pain in patients with Modic changes

    No full text
    Background Low back pain (LBP) is a leading cause of disability worldwide, but the aetiology remains poorly understood. Finding relevant biomarkers may lead to better understanding of disease mechanisms. Patients with vertebral endplate bone marrow lesions visualised on MRI as Modic changes (MCs) have been proposed as a distinct LBP phenotype, and inflammatory mediators may be involved in the development of MCs. Objectives To identify possible serum biomarkers for LBP in patients with MCs. Methods In this case control study serum levels of 40 cytokines were compared between patients with LBP and MC type 1 (n=46) or type 2 (n=37) and healthy controls (n=50). Results Analyses identified significantly higher levels of six out of 40 cytokines in the MC type 1 group (MC1), and five in the MC type 2 group (MC2) compared with healthy controls. Six cytokines were moderately correlated with pain. Principal component analyses revealed clustering and separation of patients with LBP and controls, capturing 40.8% of the total variance, with 10 cytokines contributing to the separation. Macrophage migration inhibitory factor (MIF) alone accounted for 92% of the total contribution. Further, receiver operating characteristics analysis revealed that MIF showed an acceptable ability to distinguish between patients and controls (area under the curve=0.79). Conclusions These results suggest that cytokines may play a role in LBP with MCs. The clinical significance of the findings is unknown. MIF strongly contributed to clustering of patients with LBP with MCs and controls, and might be a biomarker for MCs. Ultimately, these results may guide future research on novel treatments for this patient group

    Macrophage migration inhibitory factor: A potential biomarker for chronic low back pain in patients with Modic changes

    No full text
    Background: Low back pain (LBP) is a leading cause of disability worldwide, but the aetiology remains poorly understood. Finding relevant biomarkers may lead to better understanding of disease mechanisms. Patients with vertebral endplate bone marrow lesions visualised on MRI as Modic changes (MCs) have been proposed as a distinct LBP phenotype, and inflammatory mediators may be involved in the development of MCs. Objectives: To identify possible serum biomarkers for LBP in patients with MCs. Methods: In this case control study serum levels of 40 cytokines were compared between patients with LBP and MC type 1 (n=46) or type 2 (n=37) and healthy controls (n=50). Results: Analyses identified significantly higher levels of six out of 40 cytokines in the MC type 1 group (MC1), and five in the MC type 2 group (MC2) compared with healthy controls. Six cytokines were moderately correlated with pain. Principal component analyses revealed clustering and separation of patients with LBP and controls, capturing 40.8% of the total variance, with 10 cytokines contributing to the separation. Macrophage migration inhibitory factor (MIF) alone accounted for 92% of the total contribution. Further, receiver operating characteristics analysis revealed that MIF showed an acceptable ability to distinguish between patients and controls (area under the curve=0.79). Conclusions: These results suggest that cytokines may play a role in LBP with MCs. The clinical significance of the findings is unknown. MIF strongly contributed to clustering of patients with LBP with MCs and controls and might be a biomarker for MCs. Ultimately, these results may guide future research on novel treatments for this patient group

    Association of Modic change types and their short tau inversion recovery signals with clinical characteristics : a cross sectional study of chronic low back pain patients in the AIM-study

    No full text
    Background: Modic Changes (MCs, magnetic resonance imaging (MRI) signal changes in the vertebral bone marrow extending from the vertebral endplate) may represent a subgroup of nonspecific chronic low back pain that could benefit from a specific management. The primary aim was to compare clinical characteristics between patients with type 1 versus type 2 MCs. The secondary aim was to explore associations between clinical characteristics and MC related short tau inversion recovery (STIR) signals. Methods: This cross-sectional study used baseline data prospectively collected between 2015 and 2017 on the 180 patients included in the AIM-study (Antibiotics In Modic changes), a randomized controlled trial in a Norwegian hospital out-patient setting of patients with chronic low back pain, a lumbar disc herniation within the last 2 years, low back pain intensity score ≥ 5 (on a 0–10 scale) and current type 1 or type 2 MCs at the previously herniated lumbar disc level. We used prespecified clinical characteristics including self-report measures, physiologic measures and functional measures from clinical history and examination. The diagnostic accuracy of various clinical characteristics to discriminate between patients with type 1 MCs (with or without additional type 2 MCs) and patents with type 2 MCs only (not type 1) were assessed by calculating the area under the receiver-operating curve. We assessed the correlations of clinical characteristics with details of MC related STIR signal increase. Results: No clinical characteristic differed between patients with type 1 (n = 118) versus type 2 (but not type 1) (n = 62) MCs. The clinical characteristics showed no/minor differences or no/weak correlations with MC related STIR signal increase. Patients with a positive Springing test (at any lumbar level) had slightly less volume of STIR signal increase than those with a negative test (mean difference 1.3 on a 0–48 scale, 95% CI 0.3 to 2.3). Conclusion: Clinical characteristics were similar for patients with type 1 MCs and patients with type 2 MCs, and showed no clinically relevant correlations with MC related STIR signal increase

    Antibiotic treatment In patients with chronic low back pain and Modic changes (the AIM study): study protocol for a randomised controlled trial.

    No full text
    Background A previous randomised controlled trial (RCT) of patients with chronic low back pain (LBP) and vertebral bone marrow (Modic) changes (MCs) on magnetic resonance imaging (MRI), reported that a 3-month, high-dose course of antibiotics had a better effect than placebo at 12 months’ follow-up. The present study examines the effects of antibiotic treatment in chronic LBP patients with MCs at the level of a lumbar disc herniation, similar to the previous study. It also aims to assess the cost-effectiveness of the treatment, refine the MRI assessment of MCs, and further evaluate the impact of the treatment and the pathogenesis of MCs by studying genetic variability and the gene and protein expression of inflammatory biomarkers. Methods/design A double-blinded RCT is conducted at six hospitals in Norway, comparing orally administered amoxicillin 750 mg, or placebo three times a day, over a period of 100 days in patients with chronic LBP and type I or II MCs at the level of a MRI-confirmed lumbar disc herniation within the preceding 2 years. The inclusion will be stopped when at least 80 patients are included in each of the two MC type groups. In each MC type group, the study is designed to detect (β = 0.1, α = 0.05) a mean difference of 4 (standard deviation 5) in the Roland Morris Disability Questionnaire score between the two treatment groups (amoxicillin or placebo) at 1-year follow-up. The study includes cost-effectiveness measures. Blood samples are assessed for security measures and for possible inflammatory mediators and biomarkers at different time points. MCs are evaluated on MRI at baseline and after 12 months. A blinded intention-to-treat analysis of treatment effects will be performed in the total sample and in each MC type group. Discussion To ensure the appropriate use of antibiotic treatment, its effect in chronic LBP patients with MCs should be re-assessed. This study will investigate the effects and cost-effectiveness of amoxicillin in patients with chronic LBP and MCs at the level of a disc herniation. The study may also help to refine imaging and characterise the biomarkers of MCs

    Clinical effect modifiers of antibiotic treatment in patients with chronic low back pain and Modic changes - Secondary analyses of a randomised, placebo-controlled trial (the AIM study)

    No full text
    Background Randomised trials on antibiotic treatment for patients with chronic low back pain and vertebral endplate changes visible on MRI (Modic changes) have shown mixed results. A possible explanation might be a real treatment effect in subgroups of the study populations. The purpose of the present study was to explore potential clinical effect modifiers of 3-months oral amoxicillin treatment in patients with chronic low back pain and type I or II Modic changes at the level of a previous lumbar disc herniation. Methods We performed analyses of effect modifiers on data from AIM, a double-blind parallel-group multicentre trial. One hundred eighty patients with chronic low back pain, previous disc herniation, Modic change type I (n = 118) or type II (n = 62) were randomised to 3-months oral treatment with 750 mg amoxicillin (n = 89) or placebo (n = 91) three times daily. The primary outcome was the Roland-Morris Disability Questionnaire (RMDQ) score (possible values 0–24) at 1-year follow-up in the intention-to-treat population. The predefined minimal clinically important between-group mean difference was 4 RMDQ points (not reached in the primary analysis of AIM). Predefined baseline characteristics were analysed as potential effect modifiers, four primary (type I Modic changes, previous disc surgery, positive pain provocation test, high CRP) and five exploratory (disturbed sleep, constant low back pain, short duration of low back pain, younger age, and male) using ANCOVA with interaction terms. Results None of the four primary potential effect modifiers had strong evidence of modifying the treatment effect. In patients younger than 40 years the difference in mean RMDQ score between the treatment groups was − 4.0 (95%CI, − 6.9 to − 1.2), compared to − 0.5 (95%CI, − 2.3 to 1.3) in patients 40 years or older, both in favour of amoxicillin treatment (exploratory analysis). Conclusions We did not find evidence for convincing clinical effect modifiers of antibiotic treatment in patients with chronic low back pain and Modic changes. Our results for younger age in these explorative analyses should not affect clinical treatment decisions without confirmation in future studies
    corecore