30 research outputs found

    Neuronal differentiation of hair-follicle-bulge-derived stem cells co-cultured with mouse cochlear modiolus explants

    Get PDF
    Stem-cell-based repair of auditory neurons may represent an attractive therapeutic option to restore sensorineural hearing loss. Hair-follicle-bulge-derived stem cells (HFBSCs) are promising candidates for this type of therapy, because they (1) have migratory properties, enabling migration after transplantation, (2) can differentiate into sensory neurons and glial cells, and (3) can easily be harvested in relatively high numbers. However, HFBSCs have never been used for this purpose. We hypothesized that HFBSCs can be used for cell-based repair of the auditory nerve and we have examined their migration and incorporation into cochlear modiolus explants and their subsequent differentiation. Modiolus explants obtained from adult wild-type mice were cultured in the presence of EF1α-copGFP-transduced HFBSCs, constitutively expressing copepod green fluorescent protein (copGFP). Also, modiolus explants without hair cells were co-cultured with DCX-copGFP-transduced HFBSCs, which demonstrate copGFP upon doublecortin expression during neuronal differentiation. Velocity of HFBSC migration towards modiolus explants was calculated, and after two weeks, co-cultures were fixed and processed for immunohistochemical staining. EF1α-copGFP HFBSC migration velocity was fast: 80.5 ± 6.1 μm/h. After arrival in the explant, the cells formed a fascicular pattern and changed their phenotype into an ATOH1-positive neuronal cell type. DCX-copGFP HFBSCs became green-fluorescent after integration into the explants, confirming neuronal differentiation of the cells. These results show that HFBSC-derived neuronal progenitors are migratory and can integrate into cochlear modiolus explants, while adapting their phenotype depending on this micro-environment. Thus, HFBSCs show potential to be employed in cell-based therapies for auditory nerve repair

    Measuring thermal conductivities of anisotropic synthetic graphite-liquid crystal polymer composites

    No full text
    In this study, synthetic graphite particles were added to a liquid crystal polymer and the resulting composites were tested for both the through-plane thermal conductivity k thru and the in-plane thermal conductivity k in using the transient plane source method. The end use application for these composites is in fuel cell bipolar plate fabrication. The goal of this work was to expand upon a previously developed simple empirical model for the in-plane thermal conductivity, which is easily measured with the transient plane source method. The results show that the square root of the product of the through-plane and in-plane thermal conductivities is an exponential function of the volume percent of filler, φ. As the through-plane thermal conductivity of these composites is accurately predicted with a modified Nielsen model, this empirical relationship can be used to estimate in-plane thermal conductivities for a range of applications
    corecore