24 research outputs found
Distinct Effector Memory CD4+ T Cell Signatures in Latent Mycobacterium tuberculosis Infection, BCG Vaccination and Clinically Resolved Tuberculosis
Two billion people worldwide are estimated to be latently infected with Mycobacterium tuberculosis (Mtb) and are at risk for developing active tuberculosis since Mtb can reactivate to cause TB disease in immune-compromised hosts. Individuals with latent Mtb infection (LTBI) and BCG-vaccinated individuals who are uninfected with Mtb, harbor antigen-specific memory CD4+ T cells. However, the differences between long-lived memory CD4+ T cells induced by latent Mtb infection (LTBI) versus BCG vaccination are unclear. In this study, we characterized the immune phenotype and functionality of antigen-specific memory CD4+ T cells in healthy BCG-vaccinated individuals who were either infected (LTBI) or uninfected (BCG) with Mtb. Individuals were classified into LTBI and BCG groups based on IFN-γ ELISPOT using cell wall antigens and ESAT-6/CFP-10 peptides. We show that LTBI individuals harbored high frequencies of late-stage differentiated (CD45RA−CD27−) antigen-specific effector memory CD4+ T cells that expressed PD-1. In contrast, BCG individuals had primarily early-stage (CD45RA−CD27+) cells with low PD-1 expression. CD27+ and CD27− as well as PD-1+ and PD-1− antigen-specific subsets were polyfunctional, suggesting that loss of CD27 expression and up-regulation of PD-1 did not compromise their capacity to produce IFN-γ, TNF-α and IL-2. PD-1 was preferentially expressed on CD27− antigen-specific CD4+ T cells, indicating that PD-1 is associated with the stage of differentiation. Using statistical models, we determined that CD27 and PD-1 predicted LTBI versus BCG status in healthy individuals and distinguished LTBI individuals from those who had clinically resolved Mtb infection after anti-tuberculosis treatment. This study shows that CD4+ memory responses induced by latent Mtb infection, BCG vaccination and clinically resolved Mtb infection are immunologically distinct. Our data suggest that differentiation into CD27−PD-1+ subsets in LTBI is driven by Mtb antigenic stimulation in vivo and that CD27 and PD-1 have the potential to improve our ability to evaluate true LTBI status
An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity
Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy
