5,785 research outputs found
Software design for the control system for Small-Size Telescopes with single-mirror of the Cherenkov Telescope Array
The Small-Size Telescope with single-mirror (SST-1M) is a 4 m Davies-Cotton
telescope and is among the proposed telescope designs for the Cherenkov
Telescope Array (CTA). It is conceived to provide the high-energy ( few TeV)
coverage. The SST-1M contains proven technology for the telescope structure and
innovative electronics and photosensors for the camera. Its design is meant to
be simple, low-budget and easy-to-build industrially.
Each device subsystem of an SST-1M telescope is made visible to CTA through a
dedicated industrial standard server. The software is being developed in
collaboration with the CTA Medium-Size Telescopes to ensure compatibility and
uniformity of the array control. Early operations of the SST-1M prototype will
be performed with a subset of the CTA central array control system based on the
Alma Common Software (ACS). The triggered event data are time stamped,
formatted and finally transmitted to the CTA data acquisition.
The software system developed to control the devices of an SST-1M telescope
is described, as well as the interface between the telescope abstraction to the
CTA central control and the data acquisition system.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
DigiCam - Fully Digital Compact Read-out and Trigger Electronics for the SST-1M Telescope proposed for the Cherenkov Telescope Array
The SST-1M is one of three prototype small-sized telescope designs proposed
for the Cherenkov Telescope Array, and is built by a consortium of Polish and
Swiss institutions. The SST-1M will operate with DigiCam - an innovative,
compact camera with fully digital read-out and trigger electronics. A high
level of integration will be achieved by massively deploying state-of-the-art
multi-gigabit transmission channels, beginning from the ADC flash converters,
through the internal data and trigger signals transmission over backplanes and
cables, to the camera's server link. Such an approach makes it possible to
design the camera to fit the size and weight requirements of the SST-1M
exactly, and provide low power consumption, high reliability and long lifetime.
The structure of the digital electronics will be presented, along with main
physical building blocks and the internal architecture of FPGA functional
subsystems.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Using muon rings for the optical throughput calibration of the SST-1M prototype for the Cherenkov Telescope Array
Imaging Atmospheric Cherenkov Telescopes (IACTs) are ground-based instruments
devoted to the study of very high energy gamma-rays coming from space. The
detection technique consists of observing images created by the Cherenkov light
emitted when gamma rays, or more generally cosmic rays, propagate through the
atmosphere. While in the case of protons or gamma-rays the images present a
filled and more or less elongated shape, energetic muons penetrating the
atmosphere are visualised as characteristic circular rings or arcs. A
relatively simple analysis of the ring images allows the reconstruction of all
the relevant parameters of the detected muons, such as the energy, the impact
parameter, and the incoming direction, with the final aim to use them to
calibrate the total optical throughput of the given IACT telescope. We present
the results of preliminary studies on the use of images created by muons as
optical throughput calibrators of the single mirror small size telescope
prototype SST-1M proposed for the Cherenkov Telescope Array.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
The Extreme Energy Events HECR array: status and perspectives
The Extreme Energy Events Project is a synchronous sparse array of 52
tracking detectors for studying High Energy Cosmic Rays (HECR) and Cosmic
Rays-related phenomena. The observatory is also meant to address Long Distance
Correlation (LDC) phenomena: the network is deployed over a broad area covering
10 degrees in latitude and 11 in longitude. An overview of a set of preliminary
results is given, extending from the study of local muon flux dependance on
solar activity to the investigation of the upward-going component of muon flux
traversing the EEE stations; from the search for anisotropies at the sub-TeV
scale to the hints for observations of km-scale Extensive Air Shower (EAS).Comment: XXV ECRS 2016 Proceedings - eConf C16-09-04.
Precision measurement of the Dalitz plot distribution with the KLOE detector
Using fb of data collected with
the KLOE detector at DANE, the Dalitz plot distribution for the decay is studied with the world's largest sample of events. The Dalitz plot density is parametrized as a polynomial
expansion up to cubic terms in the normalized dimensionless variables and
. The experiment is sensitive to all charge conjugation conserving terms of
the expansion, including a term. The statistical uncertainty of all
parameters is improved by a factor two with respect to earlier measurements.Comment: 11 pages, 9 figures, supplement: an ascii tabl
Banking union in historical perspective: the initiative of the European Commission in the 1960s-1970s
This article shows that planning for the organization of EU banking regulation and supervision did not just appear on the agenda in recent years with discussions over the creation of the eurozone banking union. It unveils a hitherto neglected initiative of the European Commission in the 1960s and early 1970s. Drawing on extensive archival work, this article explains that this initiative, however, rested on a number of different assumptions, and emerged in a much different context. It first explains that the Commission's initial project was not crisis-driven; that it articulated the link between monetary integration and banking regulation; and finally that it did not set out to move the supervisory framework to the supranational level, unlike present-day developments
Jet production in charged current deep inelastic e⁺p scatteringat HERA
The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS
Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}
Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)
- …
