748 research outputs found

    Preparing athletes and teams for the Olympic Games: experiences and lessons learned from the world's best sport psychologists

    Get PDF
    As part of an increased effort to understand the most effective ways to psychologically prepare athletes and teams for Olympic competition, a number of sport psychology consultants have offered best-practice insights into working in this context. These individual reports have typically comprised anecdotal reflections of working with particular sports or countries; therefore, a more holistic approach is needed so that developing practitioners can have access to - and utilise - a comprehensive evidence-base. The purpose of this paper is to provide a panel-type article, which offers lessons and advice for the next generation of aspiring practitioners on preparing athletes and teams for the Olympic Games from some of the world’s most recognised and experienced sport psychologists. The sample comprised 15 sport psychology practitioners who, collectively, have accumulated over 200 years of first-hand experience preparing athletes and/or teams from a range of nations for six summer and five winter Olympic Games. Interviews with the participants revealed 28 main themes and 5 categories: Olympic stressors, success and failure lessons, top tips for neophyte practitioners, differences within one’s own consulting work, and multidisciplinary consulting. It is hoped that the findings of this study can help the next generation of sport psychologists better face the realities of Olympic consultancy and plan their own professional development so that, ultimately, their aspirations to be the world’s best can become a reality

    Community acceptance of large-scale solar energy installations in developing countries: Evidence from Morocco

    Get PDF
    Renewable energy production is climbing the public agenda in many countries in the Middle East and North Africa (MENA region), for reasons of energy security, independence and local value creation. While technical and economic barriers are largely understood, in this paper we investigate the issue of community acceptance. In so doing, we explore the importance of relevant drivers of community acceptance such as level of expected socio-economic and environmental impacts, procedural and distributive justice, and trust. We conducted 232 face-to-face interviews with the local population in Ouarzazate in Morocco, the building site of a flagship project for concentrated solar power in the MENA region. We find that community acceptance is almost universal, particularly because solar power is perceived to be environmentally friendly. At the same time perceived level of knowledge about the project is very low, which is positively linked to the high level of acceptance. Our data suggest that there may be some social desirability bias distorting community acceptance; only long-term experience with the project will show whether hopes for job creation will be fulfilled and high levels of acceptance can be maintained

    The Ultraviolet Spectrum of OCS from First Principles: Electronic Transitions, Vibrational Structure and Temperature Dependence

    Get PDF
    Global three dimensional potential energy surfaces and transition dipole moment functions are calculated for the lowest singlet and triplet states of carbonyl sulfide at the multireference configuration interaction level of theory. The first ultraviolet absorption band is then studied by means of quantum mechanical wave packet propagation. excitation of the repulsive 21A\u27 state gives the main contribution to the cross section. Excitation of the repulsive 11A state is about a factor of 20 weaker at the absorption peak (Eph ≈ 45 000 cm-1) but becomes comparable to the 21A\u27 state absorption with decreasing energy (35 000 cm-1) and eventually exceeds it. Direct excitation of the repulsive triplet states is negligible except at photon energies Eph \u3c 38 000 cm-1. The main structure observed in the cross section is caused by excitation of the bound 23A state, which is nearly degerate with the 2 1A\u27 state in the Franck-Condon region. The structure observed in the low energy tail of the spectrum is caused by excitation of quasi-bound bending vibrational states of the 21A\u27 and 11A electronic states. The absorption cross sections agree well with experimental data and the temperature dependence of the cross section is well reproduced

    Multi-State Analysis of the OCS Ultraviolet Absorption Including Vibrational Structure

    Get PDF
    The first absorption band of OCS (carbonyl sulfide) is analyzed using potential energy surfaces and transition dipole moment functions of the lowest four singlet and the lowest four triplet states. Excitation of the 21A\u27 state is predominant except at very low photon energies. It is shown that the vibrational structures in the center of the band are due to excitation of the 23A triplet state, whereas the structures at the very low energies are caused by bending excitation in the potential wells of states 21A\u27 and 11A

    Two-Color Coherent Photodissociation of Nitrogen Oxide in Intense Laser Fields

    Full text link
    A simple one-dimensional semi-classical model with a Morse potential is used to investigate the possibility of two-color infrared multi-photon dissociation of vibrationally excited nitrogen oxide. The amplitude ratio effects and adiabatic effects are investigated. Some initial states are found to have thresholds smaller than expected from single-mode considerations and multiple thresholds exist for initial states up to 32. PACS: 42.50.HzComment: 3 pages, old papers, add source files to replace original postscrip

    Photodissociation of N\u3csub\u3e2\u3c/sub\u3eO: Energy Partitioning

    Get PDF
    The energy partitioning in the UV photodissociation of N2O is investigated by means of quantum mechanical wave packet and classical trajectory calculations using recently calculated potential energy surfaces. Vibrational excitation of N2 is weak at the onset of the absorption spectrum, but becomes stronger with increasing photon energy. Since the NNO equilibrium angles in the ground and the excited state differe by about 70°, the molecule experiences an extraordinarily large torque during fragmentation producing N2in very high rotational states. The vibrational and rotational distributions obtained from the quantum mechanical and the classical calculations agree remarkably well. The shape of the rotational distributions is semi-quantitatively explained by a two-dimensional verision of the reflection principle. The calculated rotational distribution for excitation with Ν = 204 nm and the translational energy distribution for 193 nm agree well with experimental results, except for the tails of the experimental distributions corresponding to excitation of the highest rotational states. Inclusion of nonadiabatic transitions from the excited to the ground electronic state at relatively large N2-O separations, studied by trajectory surface hopping, improves the agreement at high j

    Ultraviolet Photodissociation of OCS: Product Energy and Angular Distributions

    Get PDF
    The ultraviolet photodissociation of carbonyl sulfide (OCS) was studied using three-dimensional potential energy surfaces and both quantum mechanical dynamics calculations and classical trajectory calculations including surface hopping. The transition dipole moment functions used in an earlier study [J. A. Schmidt, M. S. Johnson, G. C. McBane, and R. Schinke, J. Chem. Phys. 137, 054313 (2012)] were improved with more extensive treatment of excited electronic states. The new functions indicate a much larger contribution from the 1 1A state (1Σ- in linear OCS) than was found in the previous work. The new transition dipole functions yield absorption spectra that agree with experimental data just as well as the earlier ones. The previously reported potential energy surfaces were also empirically modified in the region far from linearity. The resulting product state distributions Pv, j, angular anisotrophy parameters β(j), and carbon monoxide rotational alignment parameters A0(2)(j) agree reasonably well with the experimental results, while those computed from the earlier transition dipole and potential energy functions do not. The higher-j peak in the bimodal rotational distribution is shown to arise from nonadiabatic transitions from state 2 1A\u27 to the OCS ground state late in the dissociation

    A novel COL1A2 C-propeptide cleavage site mutation causing high bone mass osteogenesis imperfecta with a regional distribution pattern

    Get PDF
    Osteogenesis imperfecta (OI) is typically characterized by low bone mass and increased bone fragility caused by heterozygous mutations in the type I procollagen genes (COL1A1/COL1A2). We report two cases of a 56-year-old woman and her 80-year-old mother who suffered from multiple vertebral and non-vertebral fractures with onset in early childhood. A full osteologic assessment including dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and serum analyses pointed to a high bone mineral density (BMD) in the hip (DXA Z-score + 3.7 and + 3.9) but low to normal bone mass in the spine and preserved bone microstructure in the distal tibia. Serum markers of bone formation and bone resorption were elevated. Using whole exome sequencing, we identified a novel mutation in the COL1A2 gene causing a p. (Asp1120Gly) substitution at the protein level and affecting the type I procollagen C-propeptide cleavage site. In line with previously reported cases, our data independently prove the existence of an unusual phenotype of high bone mass OI caused by a mutation in the procollagen C-propeptide cleavage with a clinically persistent phenotype through adulthood

    A

    Full text link
    • …
    corecore