67 research outputs found

    Self-reported sexually transmitted infections and their correlates among men who have sex with men in Norway: an Internet-based cross-sectional survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidences of reportable sexually transmitted infections (STI) among men who have sex with men (MSM) have increased since the late 1990 s in Norway. The objectives of our study were to assess factors, associated with recent selected STI among MSM, living in Norway in order to guide prevention measures.</p> <p>Methods</p> <p>We conducted a cross-sectional Internet-based survey during 1-19 October 2007 among members of a MSM-oriented Norwegian website using an anonymous questionnaire on demographics, sexual behaviour, drug and alcohol use, and STI. The studied outcomes were gonorrhoea, syphilis, HIV or Chlamydia infection in the previous 12 months. Associations between self-reported selected STI and their correlates were analysed by multivariable Poisson regression. P value for trend (p-trend), adjusted prevalence ratios (PR) with 95% confidence intervals [] were calculated.</p> <p>Results</p> <p>Among 2430 eligible 16-74 years old respondents, 184 (8%) reported having had one of the following: syphilis (n = 17), gonorrhoea (n = 35), HIV (n = 42) or Chlamydia (n = 126) diagnosed in the past 12 months. Reporting Chlamydia was associated with non-western background (PR 2.8 [1.4-5.7]), number of lifetime male partners (p-trend < 0.001), unsafe sex under the influence of alcohol (PR 1.8 [1.1-2.9]) and with younger age (p-trend = 0.002). Reporting gonorrhoea was associated with unrevealed background (PR 5.9 [1.3-26.3]), having more than 50 lifetime male partners (PR 4.5 [1.3-15.6]) and more than 5 partners in the past 6 months (PR 3.1 [1.1-8.8]), while mid-range income was protective (PR 0.1 [0.0-0.6]). Reporting HIV was associated with residing in Oslo or Akershus county (PR 2.3 [1.2-4.6]), non-western background (PR 5.4 [1.9-15.3]), unrevealed income (PR 10.4 [1.5-71.4]), number of lifetime male partners (p-trend < 0.001) and being under the influence of selected drugs during sex in the past 12 months (PR 5.2 [2.7-11.4]). In addition, the frequency of feeling drunk was reversibly associated with HIV.</p> <p>Conclusions</p> <p>Our study demonstrates different associations of demographic and behavioural factors with different STI outcomes in the study population. Number of lifetime male partners was the most important potential predictor for Chlamydia and HIV. The STI prevention efforts among MSM should focus on Oslo and Akershus, promote safe sex practices and tackle sex-related drug and alcohol use.</p

    Seroprevalence and risk factors of Q fever in goats on commercial dairy goat farms in the Netherlands, 2009-2010

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to estimate the seroprevalence of <it>Coxiella burnetii </it>in dairy goat farms in the Netherlands and to identify risk factors for farm and goat seropositivity before mandatory vaccination started. We approached 334 eligible farms with more than 100 goats for serum sampling and a farm questionnaire. Per farm, median 21 goats were sampled. A farm was considered positive when at least one goat tested ELISA positive.</p> <p>Results</p> <p>In total, 2,828 goat serum samples from 123 farms were available. Farm prevalence was 43.1% (95%CI: 34.3%-51.8%). Overall goat seroprevalence was 21.4% (95%CI: 19.9%-22.9%) and among the 53 positive farms 46.6% (95%CI: 43.8%-49.3%). Multivariable logistic regression analysis included 96 farms and showed that farm location within 8 kilometres proximity from a bulk milk PCR positive farm, location in a municipality with high cattle density (≥ 100 cattle per square kilometre), controlling nuisance animals through covering airspaces, presence of cats or dogs in the goat stable, straw imported from abroad or unknown origin and a herd size above 800 goats were independent risk factors associated with Q fever on farm level. At animal level almost identical risk factors were found, with use of windbreak curtain and artificial insemination as additional risk factors.</p> <p>Conclusion</p> <p>In 2009-2010, the seroprevalence in dairy goats in the Netherlands increased on animal and farm level compared to a previous study in 2008. Risk factors suggest spread from relatively closely located bulk milk-infected small ruminant farms, next to introduction and spread from companion animals, imported straw and use of artificial insemination. In-depth studies investigating the role of artificial insemination and bedding material are needed, while simultaneously general biosecurity measures should be updated, such as avoiding companion animals and vermin entering the stables, next to advice on farm stable constructions on how to prevent introduction and minimize airborne transmission from affected dairy goat farms to prevent further spread to the near environment.</p

    The use of a geographic information system to identify a dairy goat farm as the most likely source of an urban Q-fever outbreak

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A Q-fever outbreak occurred in an urban area in the south of the Netherlands in May 2008. The distribution and timing of cases suggested a common source. We studied the spatial relationship between the residence locations of human cases and nearby small ruminant farms, of which one dairy goat farm had experienced abortions due to Q-fever since mid April 2008. A generic geographic information system (GIS) was used to develop a method for source detection in the still evolving major epidemic of Q-fever in the Netherlands.</p> <p>Methods</p> <p>All notified Q-fever cases in the area were interviewed. Postal codes of cases and of small ruminant farms (size >40 animals) located within 5 kilometres of the cluster area were geo-referenced as point locations in a GIS-model. For each farm, attack rates and relative risks were calculated for 5 concentric zones adding 1 kilometre at a time, using the 5-10 kilometres zone as reference. These data were linked to the results of veterinary investigations.</p> <p>Results</p> <p>Persons living within 2 kilometres of an affected dairy goat farm (>400 animals) had a much higher risk for Q-fever than those living more than 5 kilometres away (Relative risk 31.1 [95% CI 16.4-59.1]).</p> <p>Conclusions</p> <p>The study supported the hypothesis that a single dairy goat farm was the source of the human outbreak. GIS-based attack rate analysis is a promising tool for source detection in outbreaks of human Q-fever.</p

    Outbreak of Yersinia enterocolitica Serogroup O:9 Infection and Processed Pork, Norway

    Get PDF
    An outbreak involving 11 persons infected with Yersinia enterocolitica O:9 was investigated in Norway in February 2006. A case-control study and microbiologic investigation indicated a ready-to-eat pork product as the probable source. Appropriate control measures are needed to address consumer risk associated with this product

    A large community outbreak of waterborne giardiasis- delayed detection in a non-endemic urban area

    Get PDF
    BACKGROUND: Giardia is not endemic in Norway, and more than 90% of reported cases acquire the infection abroad. In late October 2004, an increase in laboratory confirmed cases of giardiasis was reported in the city of Bergen. An investigation was started to determine the source and extent of the outbreak in order to implement control measures. METHODS: Cases were identified through the laboratory conducting giardia diagnostics in the area. All laboratory-confirmed cases were mapped based on address of residence, and attack rates and relative risks were calculated for each water supply zone. A case control study was conducted among people living in the central area of Bergen using age- and sex matched controls randomly selected from the population register. RESULTS: The outbreak investigation showed that the outbreak started in late August and peaked in early October. A total of 1300 laboratory-confirmed cases were reported. Data from the Norwegian Prescription Database gave an estimate of 2500 cases treated for giardiasis probably linked to the outbreak. There was a predominance of women aged 20–29 years, with few children or elderly. The risk of infection for persons receiving water from the water supply serving Bergen city centre was significantly higher than for those receiving water from other supplies. Leaking sewage pipes combined with insufficient water treatment was the likely cause of the outbreak. CONCLUSION: Late detection contributed to the large public health impact of this outbreak. Passive surveillance of laboratory-confirmed cases is not sufficient for timely detection of outbreaks with non-endemic infections

    Dutch Q fever epidemic in a ‘One Health’ context: outbreaks, seroprevalence and occupational risks

    No full text
    Q fever is a worldwide zoonosis caused by the bacterium Coxiella burnetii (C. burnetii). Small ruminants, in particular sheep and goats, have been associated with community Q fever outbreaks in other countries. Just prior to the Dutch Q fever epidemic, a nationwide survey indicated that only 2.4% of the Dutch population had been ever infected with C. burnetii, and this low prevalence may have contributed to the magnitude of this epidemic. In May 2007, inhabitants from a village in Noord-Brabant, were diagnosed with pneumonia, and C. burnetii was found to be the causal agent. In the following 3 years, Q fever became an important public health problem in The Netherlands, warranting a continuous enhanced surveillance and control. The epidemic curves of notified Q fever cases pointed at multiple simultaneously active sources with a clear seasonal pattern peaking in spring and early summer, following the lambing and kidding season. This thesis presents several epidemiological outbreak investigations focusing on identification of potential farm sources. GIS-based attack rate analysis turned out to be a promising tool to facilitate source detection in an outdoor environment and played an important role in implicating dairy goat farms affected by Q fever-induced abortion storms as the main source of the Dutch Q fever epidemic. This epidemic provided opportunities to gain knowledge about the nature of this zoonotic infection in several occupational groups with intensive livestock contact. In a ‘One Health’ research project, Q-VIVE, the C. burnetii seroprevalence in farm residents and on-farm herds was assessed, while farm-based and individual risk factors for C. burnetii seropositivity were identified to eventually formulate targeted advice and better control and preventive strategies. Seroprevalence figures were comparably high for residents of dairy goat farms (69%; 95%CI 63%-74%), dairy sheep farms (67% ; 95%CI 48%-82%), dairy cattle farms (72%; 95%CI 69%-75%) and livestock veterinarians (65%; 95%CI 69%-75%), and slightly lower for residents of non-dairy sheep farms (51%; 95%CI 45%-57%), indicating a high lifetime risk to acquire a C. burnetii infection. For veterinary students sampled over all study years, the overall seroprevalence was lower (19%; 95%CI 16%-22%).Both knowledge of the risk factors of C. burnetii seropositivity in infected animals and in farm residents were crucial in understanding the transmission routes and risks of human C. burnetiiinfection. For all sectors, a higher risk of infection was found for farms with a large herd size. Also farm location was a risk factor; being located in the provinces of Noord-Brabant and Limburg or in an area near small ruminant farms that tested positive in the mandatory bulk tank milk (BTM)-monitoring program. We furthermore identified several study-related and occupational risk factors associated with C. burnetii seropositivity in veterinary students and in workers involved in the culling of 50,000 sheep and goats. Among those who showed no signs of exposure to C. burnetii prior to the culling, 17.5% seroconverted for C. burnetii antibodies despite the use of personal protective equipment. Prolonged time working in close proximity to the animals was a risk factor for seroconversion

    Dengue fever: new paradigms for a changing epidemiology.

    Get PDF
    Dengue is the most important arthropod-borne viral disease of public health significance. Compared with nine reporting countries in the 1950s, today the geographic distribution includes more than 100 countries worldwide. Many of these had not reported dengue for 20 or more years and several have no known history of the disease. The World Health Organization estimates that more than 2.5 billion people are at risk of dengue infection. First recognised in the 1950s, it has become a leading cause of child mortality in several Asian and South American countries.This paper reviews the changing epidemiology of the disease, focusing on host and societal factors and drawing on national and regional journals as well as international publications. It does not include vaccine and vector issues. We have selected areas where the literature raises challenges to prevailing views and those that are key for improved service delivery in poor countries.Shifts in modal age, rural spread, and social and biological determinants of race- and sex-related susceptibility have major implications for health services. Behavioural risk factors, individual determinants of outcome and leading indicators of severe illness are poorly understood, compromising effectiveness of control programmes. Early detection and case management practices were noted as a critical factor for survival. Inadequacy of sound statistical methods compromised conclusions on case fatality or disease-specific mortality rates, especially since the data were often based on hospitalised patients who actively sought care in tertiary centres.Well-targeted operational research, such as population-based epidemiological studies with clear operational objectives, is urgently needed to make progress in control and prevention

    Dengue fever: new paradigms for a changing epidemiology

    No full text
    Abstract Dengue is the most important arthropod-borne viral disease of public health significance. Compared with nine reporting countries in the 1950s, today the geographic distribution includes more than 100 countries worldwide. Many of these had not reported dengue for 20 or more years and several have no known history of the disease. The World Health Organization estimates that more than 2.5 billion people are at risk of dengue infection. First recognised in the 1950s, it has become a leading cause of child mortality in several Asian and South American countries. This paper reviews the changing epidemiology of the disease, focusing on host and societal factors and drawing on national and regional journals as well as international publications. It does not include vaccine and vector issues. We have selected areas where the literature raises challenges to prevailing views and those that are key for improved service delivery in poor countries. Shifts in modal age, rural spread, and social and biological determinants of race- and sex-related susceptibility have major implications for health services. Behavioural risk factors, individual determinants of outcome and leading indicators of severe illness are poorly understood, compromising effectiveness of control programmes. Early detection and case management practices were noted as a critical factor for survival. Inadequacy of sound statistical methods compromised conclusions on case fatality or disease-specific mortality rates, especially since the data were often based on hospitalised patients who actively sought care in tertiary centres. Well-targeted operational research, such as population-based epidemiological studies with clear operational objectives, is urgently needed to make progress in control and prevention.</p
    corecore