102 research outputs found
Vitamin D supplementation and breast cancer prevention : a systematic review and meta-analysis of randomized clinical trials
In recent years, the scientific evidence linking vitamin D status or supplementation to breast cancer has grown notably. To investigate the role of vitamin D supplementation on breast cancer incidence, we conducted a systematic review and meta-analysis of randomized controlled trials comparing vitamin D with placebo or no treatment. We used OVID to search MEDLINE (R), EMBASE and CENTRAL until April 2012. We screened the reference lists of included studies and used the “Related Article” feature in PubMed to identify additional articles. No language restrictions were applied. Two reviewers independently extracted data on methodological quality, participants, intervention, comparison and outcomes. Risk Ratios and 95% Confident Intervals for breast cancer were pooled using a random-effects model. Heterogeneity was assessed using the I2 test. In sensitivity analysis, we assessed the impact of vitamin D dosage and mode of administration on treatment effects. Only two randomized controlled trials fulfilled the pre-set inclusion criteria. The pooled analysis included 5372 postmenopausal women. Overall, Risk Ratios and 95% Confident Intervals were 1.11 and 0.74–1.68. We found no evidence of heterogeneity. Neither vitamin D dosage nor mode of administration significantly affected breast cancer risk. However, treatment efficacy was somewhat greater when vitamin D was administered at the highest dosage and in combination with calcium (Risk Ratio 0.58, 95% Confident Interval 0.23–1.47 and Risk Ratio 0.93, 95% Confident Interval 0.54–1.60, respectively). In conclusions, vitamin D use seems not to be associated with a reduced risk of breast cancer development in postmenopausal women. However, the available evidence is still limited and inadequate to draw firm conclusions. Study protocol code: FARM8L2B5L
Chelators in Iron and Copper Toxicity
Purpose of Review Chelation therapy is used for diseases causing an imbalance of iron levels (for example haemochromatosis and thalassaemia) or copper levels (for example Menkes’ and Wilson’s diseases). Currently, most pharmaceutical chelators are relatively simple but often have side effects. Some have been taken off the market. This review attempts to find theory and knowledge required to design or find better chelators. Recent Findings Recent research attempting to understand the biological mechanisms of protection against iron and copper toxicity is reviewed. Understanding of molecular mechanisms behind normal iron/copper regulation may lead to the design of more sophisticated chelators. The theory of metal ion toxicity explains why some chelators, such as EDTA, which chelate metal ions in a way which exposes the ion to the surrounding environment are shown to be unsuitable except as a means of killing cancer cells. The Lewis theory of acids and bases suggests which amino acids favour the attachment of the hard/intermediate ions Fe2+, Fe3+, Cu2+ and soft ion Cu+. Non-polar amino acids will chelate the ion in a position not in contact with the surrounding cellular environment. The conclusion is that only the soft ion binding cysteine and methionine appear as suitable chelators. Clearly, nature has developed proteins which are less restricted. Recent research on naturally produced chelators such as siderophores and phytochemicals show some promise as pharmaceuticals. Summary Although an understanding of natural mechanisms of Fe/Cu regulation continues to increase, the pharmaceutical chelators for metal overload diseases remain simple non-protein molecules. Natural and synthetic alternatives have been studied but require further research before being accepted
Clinical and molecular characterization of Wilson's disease in China: identification of 14 novel mutations
<p>Abstract</p> <p>Background</p> <p>Wilson's disease (WND) is a rare autosomal recessive disorder. Here we have evaluated 62 WND cases (58 probands) from the Chinese Han population to expand our knowledge of <it>ATP7B </it>mutations and to more completely characterize WND in China.</p> <p>Methods</p> <p>The coding and promoter regions of the <it>ATP7B </it>gene were analyzed by direct sequencing in 62 Chinese patients (58 probands) with WND (male, n = 37; female, n = 25; age range, 2 ~ 61 years old).</p> <p>Results</p> <p>Neurologic manifestations were associated with older age at diagnosis (p < 0.0001) and longer diagnostic delay (p < 0.0001). Age at diagnosis was also correlated with urinary copper concentration (r = 0.58, p < 0.001). Forty different mutations, including 14 novel mutations, were identified in these patients. Common mutations included p.Arg778Leu (31.9%) and p.Pro992Leu (11.2%). Homozygous p.Arg778Leu and nonsense mutation/frameshift mutations were more often associated with primary hepatic manifestations (p = 0.0286 and p = 0.0383, respectively) and higher alanine transaminase levels at diagnosis (p = 0.0361 and p = 0.0047, respectively). Nonsense mutation/frameshift mutations were also associated with lower serum ceruloplasmin (p = 0.0065).</p> <p>Conclusions</p> <p>We identified 14 novel mutations and found that the spectrum of mutations of <it>ATP7B </it>in China is quite distinct from that of Western countries. The mutation type plays a role in predicting clinical manifestations. Genetic testing is a valuable tool to detect WND in young children, especially in patients younger than 8 years old. Four exons (8, 12, 13, and 16) and two mutations (p.Arg778Leu, p.Pro992Leu) should be considered high priority for cost-effective testing in China.</p
Resolved Psychosis after Liver Transplantation in a Patient with Wilson’s Disease
A psychiatric involvement is frequently present in Wilson’s disease. Psychiatric symptoms are sometimes the first and only manifestation of Wilson’s disease. More often a psychiatric involvement is present beside a neurologic or hepatic disease
Early stage transplantation of bone marrow cells markedly ameliorates copper metabolism and restores liver function in a mouse model of Wilson disease
<p>Abstract</p> <p>Background</p> <p>Recent studies have demonstrated that normal bone marrow (BM) cells transplantation can correct liver injury in a mouse model of Wilson disease (WD). However, it still remains unknown when BM cells transplantation should be administered. The aim of this study was to investigate the potential impact of normal BM cells transplantation at different stages of WD to correct liver injury in toxic milk (tx) mice.</p> <p>Methods</p> <p>Recipient tx mice were sublethally irradiated (5 Gy) prior to transplantation. The congenic wild-type (DL) BM cells labeled with CM-DiI were transplanted via caudal vein injection into tx mice at the early (2 months of age) or late stage (5 months of age) of WD. The same volume of saline or tx BM cells were injected as controls. The DL donor cell population, copper concentration, serum ceruloplasmin oxidase activity and aspartate aminotransferase (AST) levels in the various groups were evaluated at 1, 4, 8 and 12 weeks post-transplant, respectively.</p> <p>Results</p> <p>The DL BM cells population was observed from 1 to 12 weeks and peaked by the 4<sup>th </sup>week in the recipient liver after transplantation. DL BM cells transplantation during the early stage significantly corrected copper accumulation, AST across the observed time points and serum ceruloplasmin oxidase activity through 8 to 12 weeks in tx mice compared with those treated with saline or tx BM cells (all <it>P </it>< 0.05). In contrast, BM cells transplantation during the late stage only corrected AST levels from 4 to 12 weeks post-transplant and copper accumulation at 12 weeks post-transplant (all <it>P </it>< 0.05). No significant difference was found between the saline and tx BM cells transplantation groups across the observed time points (<it>P </it>> 0.05).</p> <p>Conclusions</p> <p>Early stage transplantation of normal BM cells is better than late stage transplantation in correcting liver function and copper metabolism in a mouse model of WD.</p
Gemcitabine with or without continuous infusion 5-FU in advanced pancreatic cancer: a randomised phase II trial of the Italian oncology group for clinical research (GOIRC)
This study was performed to determine the activity of adding continuous infusion (CI) of 5-fluorouracil (5-FU) to gemcitabine (GEM) vs GEM alone in advanced pancreatic cancer (APC). In all, 94 chemo-naïve patients with APC were randomised to receive GEM alone (arm A: 1000 mg m−2 per week for 7 weeks followed by a 2 week rest period, then weekly for 3 consecutive weeks out of every 4 weeks) or in combination with CI 5-FU (arm B: CI 5-FU 200 mg m−2 day−1 for 6 weeks followed by a 2 week rest period, then for 3 weeks every 4 weeks). Overall response rate (RR) was the primary end point and criteria for decision were planned according to the Simon's optimal two-stage design. The overall RR was 8% (arm A) and 11% (arm B) (95% confidence interval: 0.5–16% and 2–22%), respectively, and stable disease was 29 and 28%. The median duration of RR was 34 weeks (range 25–101 weeks) for GEM and 26 weeks (range 16–46 weeks) for the combination. The median progression-free survival (PFS) was 14 weeks (range 2–65 weeks) and 18 weeks (range 4–51 weeks), respectively. The median overall survival (OS) was 31 weeks (range 1–101 weeks) and 30 weeks (1–101 weeks). Toxicity was mild in both arms. This study does not show promising activity in terms of RR, PFS and OS for the double combination arm in APC
Risk of ischemic stroke in patients with ovarian cancer: a nationwide population-based study
Canine models of copper toxicosis for understanding mammalian copper metabolism
Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeostasis remain unanswered. Genetic studies in the Bedlington terrier, a dog breed affected with copper toxicosis, identified COMMD1, a gene that was previously unknown to be involved in copper metabolism. Besides the Bedlington terrier, a number of other dog breeds suffer from hereditary copper toxicosis and show similar phenotypes to humans with copper storage disorders. Unlike the heterogeneity of most human populations, the genetic structure within a purebred dog population is homogeneous, which is advantageous for unraveling the molecular genetics of complex diseases. This article reviews the work that has been done on the Bedlington terrier, summarizes what was learned from studies into COMMD1 function, describes hereditary copper toxicosis phenotypes in other dog breeds, and discusses the opportunities for genome-wide association studies on copper toxicosis in the dog to contribute to the understanding of mammalian copper metabolism and copper metabolism disorders in man
- …
