3 research outputs found

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Responsiveness to botulinum toxin type A in muscles of complex regional pain patients with tonic dystonia

    No full text
    Tonic dystonia of the limbs in complex regional pain syndrome (CRPS) is associated with considerable disability. Treatment options are scarce. Botulinum toxin (BoNT) is sometimes used, but the effect is often said to be disappointing. However, this notion stems from case reports and clinicians' opinions but has never been formally studied. We therefore investigated responsiveness to BoNT in CRPS patients with tonic dystonia. We injected the extensor digitorum brevis (EDB) muscle with BoNT-A in 17 patients with CRPS and tonic dystonia to compare the response between affected and unaffected legs. We also investigated the right legs of 17 healthy controls. Responsiveness was defined as a decrease of the amplitude of the compound muscle action potential (CMAP) of >20 % from baseline 2 weeks after BoNT-A injection. We controlled for a temperature effect on BoNT efficacy by measuring skin temperature hourly directly above the EDB muscle in the first 2 weeks. CMAP amplitude decreased >20 % after injection on the affected side in 16 of 17 CRPS patients, similar to the response in unaffected legs (12/13) or legs of controls (17/17). The degree of CMAP reduction was significantly smaller in patients than in controls (56.0 ± 22.3 vs. 70.6 ± 14.6 %; p = 0.031). This may be due to a lower physical activity level and a greater difficulty to localize the EDB muscle properly in affected legs. The decrease in CMAP amplitude was not related to skin temperature. Contrary to the prevailing opinion, BoNT-A has a normal, although perhaps slightly lower efficacy in CRPS patients with dystoni
    corecore