1,738 research outputs found

    Space-Time and Matter in IIB Matrix Model - gauge symmetry and diffeomorphism -

    Get PDF
    We pursue the study of the type IIB matrix model as a constructive definition of superstring. In this paper, we justify the interpretation of space-time as distribution of eigenvalues of the matrices by showing that some low energy excitations indeed propagate in it. In particular, we show that if the distribution consists of small clusters of size nn, low energy theory acquires local SU(n) gauge symmetry and a plaquette action for the associated gauge boson is induced, in addition to a gauge invariant kinetic term for a massless fermion in the adjoint representation of the SU(n). We finally argue a possible identification of the diffeomorphism symmetry with permutation group acting on the set of eigenvalues, and show that the general covariance is realized in the low energy effective theory even though we do not have a manifest general covariance in the IIB matrix model action.Comment: 25 page

    Hamiltonian Formulation of Two Body Problem in Wheeler-Feynman electrodynamics

    Get PDF
    A Hamiltonian formulation for the classical problem of electromagnetic interaction of two charged relativistic particles is found.Comment: 22 pages, 8 Uuencoded Postscript figure

    Anisotropic Null String Cosmologies

    Get PDF
    We study string propagation in an anisotropic, cosmological background. We solve the equations of motion and the constraints by performing a perturbative expansion of the string coordinates in powers of c^2, the world-sheet speed of light. To zeroth order the string is approximated by a tensionless string (since c is proportional to the string tension T). We obtain exact, analytical expressions for the zeroth and the first order solutions and we discuss some cosmological implications.Comment: 9 pages, plain Te

    From Metastable to Coherent Sets – time-discretization schemes

    Get PDF
    Given a time-dependent stochastic process with trajectories x(t) in a space \Omega, there may be sets such that the corresponding trajectories only very rarely cross the boundaries of these sets. We can analyze such a process in terms of metastability or coherence. Metastable sets M are defined in space M \subset \Omega, coherent sets M(t) \subset \Omega are defined in space and time. Hence, if we extend the space \Omega by the time-variable t, coherent sets are metastable sets in \Omega \times [0,\infty). This relation can be exploited, because there already exist spectral algorithms for the identification of metastable sets. In this article we show that these well-established spectral algorithms (like PCCA+) also identify coherent sets of non-autonomous dynamical systems. For the identification of coherent sets, one has to compute a discretization (a matrix T) of the transfer operator of the process using a space-time-discretization scheme. The article gives an overview about different time-discretization schemes and shows their applicability in two different fields of application

    String Propagator: a Loop Space Representation

    Get PDF
    The string quantum kernel is normally written as a functional sum over the string coordinates and the world--sheet metrics. As an alternative to this quantum field--inspired approach, we study the closed bosonic string propagation amplitude in the functional space of loop configurations. This functional theory is based entirely on the Jacobi variational formulation of quantum mechanics, {\it without the use of a lattice approximation}. The corresponding Feynman path integral is weighed by a string action which is a {\it reparametrization invariant} version of the Schild action. We show that this path integral formulation is equivalent to a functional ``Schrodinger'' equation defined in loop--space. Finally, for a free string, we show that the path integral and the functional wave equation are {\it exactly } solvable.Comment: 15 pages, no figures, ReVTeX 3.

    THE FATE OF SMECTITE IN KOH SOLUTIONS

    Get PDF
    International audienceThe aim of the present study was to investigate the detailed evolution of the SAz-1 smectite in 1 M KOH at 80°C at a solid/liquid ratio of 1/80. AFM observations indicated no change in crystal size or shape. XRD measurements at 40% relative humidity revealed changes in expandability of the smectite. The 001 reflection profile of smectite was modelled using the trial-and-error approach of Sakharov et al., 1999b. The results indicate that with increasing run time the number of non expandable layers with zero or one water layer increases and that the coherent scattering domain size of the smectite decreases. Infrared spectroscopy of the reacted smectite suggests that there is no change from the initial clay products. The dehydroxylation temperature showed a slight decrease from 619° to 605°C. STA measurements demonstrated that the cis-vacant character of the octahedral sheet remained nearly unchanged throughout the experiment. Determination of the average layer charge showed a continuous increase from 0.32 to 0.42 eq/Si (Si/Al)4O10 whereas the layer charge distribution indicated the appearance of high charged smectite layers with a charge of ~ 0.6 eq/Si (Si/Al)4O10 and the disappearance of the low charged layers. XPS and SEM measurements indicate an increase of the aluminium in the smectite samples. Isotope data support the theory of a internal diffusion mechanism by gradual changes in Ύ 18O values. From these data it appears that KOH solutions provoke a mineralogical change in the 2:1 layer of the smectite minerals which increases the layer charge by increasing the Al content. This mineralogical change does not involve dissolution/crystallization processes and then must show solid state transformation of the clays at 80°C

    The Dirac-Nambu-Goto p-Branes as Particular Solutions to a Generalized, Unconstrained Theory

    Full text link
    The theory of the usual, constrained p-branes is embedded into a larger theory in which there is no constraints. In the latter theory the Fock-Schwinger proper time formalism is extended from point-particles to membranes of arbitrary dimension. For this purpose the tensor calculus in the infinite dimensional membrane space M is developed and an action which is covariant under reparametrizations in M is proposed. The canonical and Hamiltonian formalism is elaborated in detail. The quantization appears to be straightforward and elegant. No problem with unitarity arises. The conventional p-brane states are particular stationary solutions to the functional Schroedinger equation which describes the evolution of a membrane's state with respect to the invariant evolution parameter tau. A tau-dependent solution which corresponds to the wave packet of a null p-brane is found. It is also shown that states of a lower dimensional membrane can be considered as particular states of a higher dimensional membrane.Comment: 28 page

    Tailoring temporal description logics for reasoning over temporal conceptual models

    Get PDF
    Temporal data models have been used to describe how data can evolve in the context of temporal databases. Both the Extended Entity-Relationship (EER) model and the Unified Modelling Language (UML) have been temporally extended to design temporal databases. To automatically check quality properties of conceptual schemas various encoding to Description Logics (DLs) have been proposed in the literature. On the other hand, reasoning on temporally extended DLs turn out to be too complex for effective reasoning ranging from 2ExpTime up to undecidable languages. We propose here to temporalize the ‘light-weight’ DL-Lite logics obtaining nice computational results while still being able to represent various constraints of temporal conceptual models. In particular, we consider temporal extensions of DL-Lite^N_bool, which was shown to be adequate for capturing non-temporal conceptual models without relationship inclusion, and its fragment DL-Lite^N_core with most primitive concept inclusions, which are nevertheless enough to represent almost all types of atemporal constraints (apart from covering)

    New rotation periods in the Pleiades: Interpreting activity indicators

    Get PDF
    We present results of photometric monitoring campaigns of G, K and M dwarfs in the Pleiades carried out in 1994, 1995 and 1996. We have determined rotation periods for 18 stars in this cluster. In this paper, we examine the validity of using observables such as X-ray activity and amplitude of photometric variations as indicators of angular momentum loss. We report the discovery of cool, slow rotators with high amplitudes of variation. This contradicts previous conclusions about the use of amplitudes as an alternate diagnostic of the saturation of angular momentum loss. We show that the X-ray data can be used as observational indicators of mass-dependent saturation in the angular momentum loss proposed on theoretical grounds.Comment: 24 pages, LaTex (AASTeX); includes 8 postscript figures and 4 Latex tables. To appear in ApJ, Feb. 1, 1998. Postscript version of preprint can be obtained from http://casa.colorado.edu/~anitak/pubs.htm
    • 

    corecore