4,614 research outputs found

    RCA SATCOM Battery in Orbit Performance Update and Accelerated Life Test Results

    Get PDF
    No significant degradation of nickel cadmium battery performance in SATCOM F1 and F2 after almost 8 and 7-3/4 years in orbit was shown. Battery minimum discharge voltage data are presented for these spacecraft. In addition, 2 groups of nickel cadmium cells which are representative of those in orbit are undergoing real time eclipse-reduced suntime cycling in the laboratory. These groups of cells, which are being cycled at a maximum of 53% and 62% depth of discharge (based on actual capacity), have completed 14 and 15 eclipse seasons, respectively. Data for these groups of cells are presented and are compared with the in-orbit battery data

    Quantum and thermal spin relaxation in diluted spin ice: Dy(2-x)MxTi2O7 (M = Lu, Y)

    Get PDF
    We have studied the low temperature a.c. magnetic susceptibility of the diluted spin ice compound Dy(2-x)MxTi2O7, where the magnetic Dy ions on the frustrated pyrochlore lattice have been replaced with non-magnetic ions, M = Y or Lu. We examine a broad range of dilutions, 0 <= x <= 1.98, and we find that the T ~ 16 K freezing is suppressed for low levels of dilution but re-emerges for x > 0.4 and persists to x = 1.98. This behavior can be understood as a non-monotonic dependence of the quantum spin relaxation time with dilution. The results suggest that the observed spin freezing is fundamentally a single spin process which is affected by the local environment, rather than the development of spin-spin correlations as earlier data suggested.Comment: 26 pages, 9 figure

    Quenching of Cross Sections in Nucleon Transfer Reactions

    Full text link
    Cross sections for proton knockout observed in (e,e'p) reactions are apparently quenched by a factor of ~0.5, an effect attributed to short-range correlations between nucleons. Here we demonstrate that such quenching is not restricted to proton knockout, but a more general phenomenon associated with any nucleon transfer. Measurements of absolute cross sections on a number of targets between 16O and 208Pb were analyzed in a consistent way, with the cross sections reduced to spectroscopic factors through the distorted-wave Born approximation with global optical potentials. Across the 124 cases analyzed here, induced by various proton- and neutron-transfer reactions and with angular momentum transfer l=0-7, the results are consistent with a quenching factor of 0.55. This is an apparently uniform quenching of single-particle motion in the nuclear medium. The effect is seen not only in (d,p) reactions but also in reactions with A=3 and 4 projectiles, when realistic wave functions are used for the projectiles.Comment: 5 pages, 3 figures, accepted to Physical Review Letter

    Bound states due to an accelerated mirror

    Get PDF
    We discuss an effect of accelerated mirrors which remained hitherto unnoticed, the formation of a field condensate near its surface for massive fields. From the view point of an observer attached to the mirror, this is effect is rather natural because a gravitational field is felt there. The novelty here is that since the effect is not observer dependent even inertial observers will detect the formation of this condensate. We further show that this localization is in agreement with Bekenstein's entropy bound.Comment: Final version to appear in PR

    Boundary conditions and the entropy bound

    Full text link
    The entropy-to-energy bound is examined for a quantum scalar field confined to a cavity and satisfying Robin condition on the boundary of the cavity. It is found that near certain points in the space of the parameter defining the boundary condition the lowest eigenfrequency (while non-zero) becomes arbitrarily small. Estimating, according to Bekenstein and Schiffer, the ratio S/ES/E by the ζ\zeta-function, (24ζ(4))1/4(24\zeta (4))^{1/4}, we compute ζ(4)\zeta (4) explicitly and find that it is not bounded near those points that signals violation of the bound. We interpret our results as imposing certain constraints on the value of the boundary interaction and estimate the forbidden region in the parameter space of the boundary conditions.Comment: 16 pages, latex, v2: typos corrected, to appear in Phys.Rev.

    Slow spin relaxation in a highly polarized cooperative paramagnet

    Full text link
    We report measurements of the ac susceptibility of the cooperative paramagnet Tb2Ti2O7 in a strong magnetic field. Our data show the expected saturation maximum in chi(T) and also an unexpected low frequency dependence (< 1 Hz) of this peak, suggesting very slow spin relaxations are occurring. Measurements on samples diluted with nonmagnetic Y3+ or Lu3+ and complementary measurements on pure and diluted Dy2Ti2O7 strongly suggest that the relaxation is associated with dipolar spin correlations, representing unusual cooperative behavior in a paramagnetic system.Comment: Accepted for publication in Physical Review Letter

    Low Velocity Granular Drag in Reduced Gravity

    Full text link
    We probe the dependence of the low velocity drag force in granular materials on the effective gravitational acceleration (geff) through studies of spherical granular materials saturated within fluids of varying density. We vary geff by a factor of 20, and we find that the granular drag is proportional to geff, i.e., that the granular drag follows the expected relation Fprobe = {\eta} {\rho}grain geff dprobe hprobe^2 for the drag force, Fprobe on a vertical cylinder with depth of insertion, hprobe, diameter dprobe, moving through grains of density {\rho}grain, and where {\eta} is a dimensionless constant. This dimensionless constant shows no systematic variation over four orders of magnitude in effective grain weight, demonstrating that the relation holds over that entire range to within the precision of our data
    • …
    corecore