74 research outputs found

    Quantum and thermal spin relaxation in diluted spin ice: Dy(2-x)MxTi2O7 (M = Lu, Y)

    Get PDF
    We have studied the low temperature a.c. magnetic susceptibility of the diluted spin ice compound Dy(2-x)MxTi2O7, where the magnetic Dy ions on the frustrated pyrochlore lattice have been replaced with non-magnetic ions, M = Y or Lu. We examine a broad range of dilutions, 0 <= x <= 1.98, and we find that the T ~ 16 K freezing is suppressed for low levels of dilution but re-emerges for x > 0.4 and persists to x = 1.98. This behavior can be understood as a non-monotonic dependence of the quantum spin relaxation time with dilution. The results suggest that the observed spin freezing is fundamentally a single spin process which is affected by the local environment, rather than the development of spin-spin correlations as earlier data suggested.Comment: 26 pages, 9 figure

    Ga-NMR local susceptibility of the kagome-based magnet SrCr_9pGa_(12-9p)O_19. A high temperature study

    Full text link
    We report a high-TT Ga-NMR study in the kagome-based antiferromagnetic compound SrCr9p_{9p}Ga12−9p_{12-9p}O19_{19} (.81≀p≀.96.81\leq p\leq .96), and present a refined mean-field analysis of the high T local NMR susceptibility of Cr frustrated moments. We find that the intralayer kagome coupling is J=86(6)J=86(6) K, and the interlayer coupling through non-kagome Cr moments is Jâ€Č=69(7)J^{\prime }=69(7) K. The Jâ€Č/J=0.80(1)J^{\prime}/J=0.80(1) ratio confirms the common belief that the frustrated entity is a pyrochlore slab.Comment: 8 pages, 4 figures Conference paper: Highly Frustrated Magnetism 2000, Waterloo (Canada) Submitted to Canadian Journal of Physic

    Transport mechanisms in doped LaMnO3:Evidence for polaron formation

    Get PDF
    We report electrical transport experiments on the colossal magnetoresistance compound (La,Ca)MnO3 over a wide range of composition and temperature. Comparison of thermopower and electrical resistivity measurements above the metal-insulator transition indicate a transport mechanism not dominated by spin disorder, but by small polaron formation. Additionally, we find that in the high-temperature limit the thermopower corresponds to backflow of spin entropy, expected from motion of positively charged particles in a rigid S=2 system, showing a remarkable independence of S=3/2 particle density

    Field-Driven Transitions in the Dipolar Pyrochlore Antiferromagnet Gd2_2Ti2_2O7_7

    Full text link
    We present a mean-field theory for magnetic field driven transitions in dipolar coupled gadolinium titanate Gd2_2Ti2_2O7_7 pyrochlore system. Low temperature neutron scattering yields a phase that can be regarded as a 8 sublattice antiferromagnet, in which long-ranged ordered moments and fluctuating moments coexist. Our theory gives parameter regions where such a phase is realized, and predicts several other phases, with transitions amongst them driven by magnetic field as well as temperature. We find several instances of {\em local} disorder parameters describing the transitions.Comment: 4 pages, 5 figures. v2: longer version with 2 add.fig., to appear in PR

    Effects of site dilution on the magnetic properties of geometrically frustrated antiferromagnets

    Full text link
    The effect of site dilution by non magnetic impurities on the susceptibility of geometrically frustrated antiferromagnets (kagome and pyrochlore lattices) is discussed in the framework of the Generalized Constant Coupling model, for both classical and quantum Heisenberg spins. For the classical diluted pyrochlore lattice, excellent agreement is found when compared with Monte Carlo data. Results for the quantum case are also presented and discussed.Comment: 5 pages, 3 figure

    Order induced by dipolar interactions in a geometrically frustrated antiferromagnet

    Full text link
    We study the classical Heisenberg model for spins on a pyrochlore lattice interacting via long range dipole-dipole forces and nearest neighbor exchange. Antiferromagnetic exchange alone is known not to induce ordering in this system. We analyze low temperature order resulting from the combined interactions, both by using a mean-field approach and by examining the energy cost of fluctuations about an ordered state. We discuss behavior as a function of the ratio of the dipolar and exchange interaction strengths and find two types of ordered phase. We relate our results to the recent experimental work and reproduce and extend the theoretical calculations on the pyrochlore compound, Gd2_2Ti2_2O7_7, by Raju \textit{et al.}, Phys. Rev. B {\bf 59}, 14489 (1999).Comment: 5 pages, 5 figures, AMSLaTe

    Enhanced magnetocaloric effect in frustrated magnets

    Full text link
    The magnetothermodynamics of strongly frustrated classical Heisenberg antiferromagnets on kagome, garnet, and pyrochlore lattices is examined. The field induced adiabatic temperature change (dT/dH)_S is significantly larger for such systems compared to ordinary non-frustrated magnets and also exceeds the cooling rate of an ideal paramagnet in a wide range of fields. An enhancement of the magnetocaloric effect is related to presence of a macroscopic number of soft modes in frustrated magnets below the saturation field. Theoretical predictions are confirmed with extensive Monte Carlo simulations.Comment: 7 page

    Green's function approach to the magnetic properties of the kagome antiferromagnet

    Full text link
    The S=1/2S=1/2 Heisenberg antiferromagnet is studied on the kagom\'e lattice by using a Green's function method based on an appropriate decoupling of the equations of motion. Thermodynamic properties as well as spin-spin correlation functions are obtained and characterize this system as a two-dimensional quantum spin liquid. Spin-spin correlation functions decay exponentially with distance down to low temperature and the calculated missing entropy at T=0 is found to be 0.46ln⁥20.46\ln{2}. Within the present scheme, the specific heat exhibits a single peak structure and a T2T^2 dependence at low temperature.Comment: 6 (two-column revtex4) pages, 5 ps figures. Submitted to Phys. Rev.

    Susceptibility and dilution effects of the kagome bi-layer geometrically frustrated network. A Ga-NMR study of SrCr_(9p)Ga_(12-9p)O_(19)

    Full text link
    We present an extensive gallium NMR study of the geometrically frustrated kagome bi-layer compound SrCr_(9p)Ga_(12-9p)O_(19) (Cr^3+, S=3/2) over a broad Cr-concentration range (.72<p<.95). This allows us to probe locally the kagome bi-layer susceptibility and separate the intrinsic properties due to the geometric frustration from those related to the site dilution. Our major findings are: 1) The intrinsic kagome bi-layer susceptibility exhibits a maximum in temperature at 40-50 K and is robust to a dilution as high as ~20%. The maximum reveals the development of short range antiferromagnetic correlations; 2) At low-T, a highly dynamical state induces a strong wipe-out of the NMR intensity, regardless of dilution; 3) The low-T upturn observed in the macroscopic susceptibility is associated to paramagnetic defects which stem from the dilution of the kagome bi-layer. The low-T analysis of the NMR lineshape suggests that the defect can be associated with a staggered spin-response to the vacancies on the kagome bi-layer. This, altogether with the maximum in the kagome bi-layer susceptibility, is very similar to what is observed in most low-dimensional antiferromagnetic correlated systems; 4) The spin glass-like freezing observed at T_g=2-4 K is not driven by the dilution-induced defects.Comment: 19 pages, 19 figures, revised version resubmitted to PRB Minor modifications: Fig.11 and discussion in Sec.V on the NMR shif

    Colossal magnetooptical conductivity in doped manganites

    Get PDF
    We show that the current carrier density collapse in doped manganites, which results from bipolaron formation in the paramagnetic phase, leads to a colossal change of the optical conductivity in an external magnetic field at temperatures close to the ferromagnetic transition. As with the colossal magnetoresistance (CMR) itself, the corresponding magnetooptical effect is explained by the dissociation of localized bipolarons into mobile polarons owing to the exchange interaction with the localized Mn spins in the ferromagnetic phase. The effect is positive at low frequencies and negative in the high-frequency region. The present results agree with available experimental observations.Comment: 4 pages, REVTeX 3.0, two eps-figures included in the tex
    • 

    corecore