2,504 research outputs found

    Quantum-Classical Reentrant Relaxation Crossover in Dy2Ti2O7 Spin-Ice

    Get PDF
    We have studied spin relaxation in the spin ice compound Dy2Ti2O7 through measurements of the a.c. magnetic susceptibility. While the characteristic spin relaxation time is thermally activated at high temperatures, it becomes almost temperature independent below Tcross ~ 13 K, suggesting that quantum tunneling dominates the relaxation process below that temperature. As the low-entropy spin ice state develops below Tice ~ 4 K, the spin relaxation time increases sharply with decreasing temperature, suggesting the emergence of a collective degree of freedom for which thermal relaxation processes again become important as the spins become highly correlated

    Structural, orbital, and magnetic order in vanadium spinels

    Full text link
    Vanadium spinels (ZnV_2O_4, MgV_2O_4, and CdV_2O_4) exhibit a sequence of structural and magnetic phase transitions, reflecting the interplay of lattice, orbital, and spin degrees of freedom. We offer a theoretical model taking into account the relativistic spin-orbit interaction, collective Jahn-Teller effect, and spin frustration. Below the structural transition, vanadium ions exhibit ferroorbital order and the magnet is best viewed as two sets of antiferromagnetic chains with a single-ion Ising anisotropy. Magnetic order, parametrized by two Ising variables, appears at a tetracritical point.Comment: v3: streamlined introductio

    Low Temperature Spin Freezing in Dy2Ti2O7 Spin Ice

    Get PDF
    We report a study of the low temperature bulk magnetic properties of the spin ice compound Dy2Ti2O7 with particular attention to the (T < 4 K) spin freezing transition. While this transition is superficially similar to that in a spin glass, there are important qualitative differences from spin glass behavior: the freezing temperature increases slightly with applied magnetic field, and the distribution of spin relaxation times remains extremely narrow down to the lowest temperatures. Furthermore, the characteristic spin relaxation time increases faster than exponentially down to the lowest temperatures studied. These results indicate that spin-freezing in spin ice materials represents a novel form of magnetic glassiness associated with the unusual nature of geometrical frustration in these materials.Comment: 24 pages, 8 figure

    Nanoengineered Curie Temperature in Laterally-Patterned Ferromagnetic Semiconductor Heterostructures

    Full text link
    We demonstrate the manipulation of the Curie temperature of buried layers of the ferromagnetic semiconductor (Ga,Mn)As using nanolithography to enhance the effect of annealing. Patterning the GaAs-capped ferromagnetic layers into nanowires exposes free surfaces at the sidewalls of the patterned (Ga,Mn)As layers and thus allows the removal of Mn interstitials using annealing. This leads to an enhanced Curie temperature and reduced resistivity compared to unpatterned samples. For a fixed annealing time, the enhancement of the Curie temperature is larger for narrower nanowires.Comment: Submitted to Applied Physics Letters (minor corrections

    Thermodynamic Study of Excitations in a 3D Spin Liquid

    Full text link
    In order to characterize thermal excitations in a frustrated spin liquid, we have examined the magnetothermodynamics of a model geometrically frustrated magnet. Our data demonstrate a crossover in the nature of the spin excitations between the spin liquid phase and the high-temperature paramagnetic state. The temperature dependence of both the specific heat and magnetization in the spin liquid phase can be fit within a simple model which assumes that the spin excitations have a gapped quadratic dispersion relation.Comment: 5 figure

    Neural changes when actions change: Adaptation of strong and weak expectations

    Get PDF
    Repeated experiences with an event create the expectation that subsequent events will expose an analog structure. These spontaneous expectations rely on an internal model of the event that results from learning. But what happens when events change? Do experience-based internal models get adapted instantaneously, or is model adaptation a function of the solidity of, i.e., familiarity with, the corresponding internal model? The present fMRI study investigated the effects of model solidity on model adaptation in an action observation paradigm. Subjects were made acquainted with a set of action movies that displayed an altered script when encountered again in the scanning session. We found model adaptation to result in an attenuation of the premotor-parietal network for action observation. Model solidity was found to modulate activation in the parahippocampal gyrus and the anterior cerebellar lobules, where increased solidity correlated with activity increase. Finally, the comparison between early and late stages of learning indicated an effect of model solidity on adaptation rate. This contrast revealed the involvement of a fronto-mesial network of Brodmann area 10 and the ACC in those states of learning that were signified by high model solidity, no matter if the memorized original or the altered action model was the more solid component. Findings suggest that the revision of an internal model is dependent on its familiarity. Unwarranted adaptations, but also perseverations may thus be prevented

    Flux through a hole from a shaken granular medium

    Full text link
    We have measured the flux of grains from a hole in the bottom of a shaken container of grains. We find that the peak velocity of the vibration, vmax, controls the flux, i.e., the flux is nearly independent of the frequency and acceleration amplitude for a given value of vmax. The flux decreases with increasing peak velocity and then becomes almost constant for the largest values of vmax. The data at low peak velocity can be quantitatively described by a simple model, but the crossover to nearly constant flux at larger peak velocity suggests a regime in which the granular density near the container bottom is independent of the energy input to the system.Comment: 14 pages, 4 figures. to appear in Physical Review
    • …
    corecore