106 research outputs found

    Konvergente Elektronenbeugung an PbZr_{1-x}Ti_{x}O_{3}-Keramiken

    Get PDF
    Kurzfassung Für technische Anwendungen, die auf dem piezo- bzw. ferroelektrischen Effekt beruhen, wird größtenteils PZT (PbZr_{1−x}Ti_{x}O_{3}) verwendet. Obwohl das Material seit langem erfolgreich eingesetzt wird, herrscht noch Uneinigkeit darüber, was diesem Material zu seinen guten Eigenschaften verhilft. Diese wurden lange Zeit der Koexistenz von tetragonaler und rhomboedrischer Struktur im Bereich der morphotropen Phasengrenze zugeschrieben, bis vor zehn Jahren eine monokline Phase für diesen Zusammensetzungsbereich vorgeschlagen wurde. Es bestehen jedoch weiterhin Zweifel an der Existenz dieser monoklinen Phase, da für diesen Zusammensetzungsbereich im Transmissionselektronenmikroskop Nanodomänen beobachtet wurden. So können die zusätzlichen Reflexe in Röntgenpulverbeugungsbildern, die einer monoklinen Aufspaltung zugeschrieben wurden, auch als Überstrukturreflexe gestapelter rhomboedrischer Nanodomänen erklärt werden. In dieser Arbeit wurde die Symmetrie einzelner Domänen von PZT-Keramiken mit den Zusammensetzungen (1-x)/x von 60/40 bis 45/55 über die morphotrope Phasengrenze hinweg mit der Methode der konvergenten Elektronenbeugung untersucht. Dabei konnte für Zusammensetzungen PZT 60/40 bis PZT 55/45 rhomboedrische Symmetrie beobachtet werden. Für PZT 54/46 konnte sowohl monokline als auch tetragonale Symmetrie nachgewiesen werden. Mit zunehmendem Ti-Gehalt wurde zunehmend tetragonale Symmetrie beobachtet. Über die Orientierungsbeziehung benachbarter monokliner Domänen in PZT 54/46 konnten auch Zwillingsoperationen nachgewiesen werden, die für eine Ausbildung der monoklinen Phase aus der tetragonalen mit sinkender Temperatur sprechen. Der inverse Phasenübergang konnte in einem in situ Heizexperiment mit der entsprechenden Zusammensetzung beobachtet werden. Gleichzeitig verschwanden Nanodomänen. Dies spricht für eine Ausbildung der Nanodomänen als Folge der Symmetrieerniedrigung tetragonal zu monoklin. Zusätzlich wurden von reinem PbTiO3 energiegefilterte konvergente Beugungsbilder aus verschiedenen Einstrahlrichtungen aufgenommen. Anhand dieser Beugungsbilder wurden Strukturparameter, wie Atompositionen, anisotrope Temperaturfaktoren und Strukturfaktoren niedriger Beugungsordnung verfeinert. Aus den letzteren wurde die dreidimensionale Elektronendichte rekonstruiert. Diese zeigt die Kovalenz der kurzen Ti-O1 Bindung. Zusätzlich sind noch lokale Maxima abseits von Atompostionen und Bindungen zu sehen. Diese können möglicherweise polarisierten Pb 6s Zuständen zugeschrieben werden, wie sie mit Dichtefunktionaltheorie vorhergesagt wurden. Die Verlässlichkeit dieser Ergebnisse muss jedoch noch geprüft werden

    Symmetry of domains in morphotropic PbZr_{1−x}Ti_{x}O_{3} ceramics

    No full text
    PbZr1−xTixO3 (PZT) ceramic samples with compositions over the morphotropic phase boundary (MPB) ranging from 45/55 to 60/40 [(1−x)/x] are studied by transmission electron microscopy combined with convergent-beam electron diffraction (CBED). All point-group symmetries debated for morphotropic PZT, 4mm, m, and 3m, are identified. Up to PZT 54/46 the symmetry is mainly tetragonal within lamellar domain configurations. From PZT 52/48 to PZT 54/46 nanodomains evolve within the tetragonal microdomains and monoclinic symmetry is identified within the same domain configurations, together with tetragonal symmetry for PZT 54/46. For PZT 55/45 up to PZT 60/40 rhombohedral symmetry is observed. Rhombohedral domains, as identified by CBED, are characterized by their width, curved domain walls, and grainy inner contrast. This contrast, together with anisotropic first-order Laue-zone intensities, implies that local deviations from 3m symmetry may exist within rhombohedral domains. Between PZT 54/46 and PZT 55/45 the morphology of the microdomains changes abruptly. For PZT 54.5/45.5 both types of domain configurations coexist within the same grain. For PZT 56/44 a tetragonal inclusion within a rhombohedral matrix is identified by CBED. On the other side of the MPB, domains with a rhombohedral appearance are found in PZT 53.5/46.5. These observation were less frequent but show that coexistence is present in ceramic samples around the MPB

    Ferroelectric domains in PZT ceramics at the morphotropic phase boundary. Can the splitting of reflections in SAED patterns be used for the distinction of different pseudo-cubic phases?

    No full text
    Tetragonal, rhombohedral and monoclinic ferroelectric domains can all occur in morphotropic PbZr1-xTixO3 (PZT) ceramics. In this article, the influence of these domains on the splitting of reflections in selected area electron diffraction (SAED) patterns along the main pseudo-cubic zone axes is reported. The orientation of the domain wall in a transmission electron microscopy image with respect to the splitting of reflections in the diffraction pattern has to be considered for the interpretation. The distinction of tetragonal and rhombohedral splitting is achieved for a pronounced splitting except for with the domain wall edge on. As the monoclinic structure contains tetragonal as well as rhombohedral distortions, the distinction of monoclinic symmetry from tetragonal and rhombohedral based only on the splitting of reflections is not possible. Conceivable models of configurations of monoclinic subdomains inside the existing tetragonal or rhombohedral microdomains are derived from group-subgroup relations. Some experimental observations are given, which can only be explained by these models

    FEI Titan G2 80-200 CREWLEY

    Get PDF
    The FEI Titan G2 80-200 CREWLEY is a fourth generation transmission electron microscope which has been specifically designed for the investigation of a wide range of solid state phenomena taking place on the atomic scale of both the structure and chemical composition. For these purposes, the FEI Titan G2 80-200 CREWLEY is equipped with a Schottky type high-brightness electron gun (FEI X-FEG), a Cs probe corrector (CEOS DCOR), an in-column Super-X energy dispersive X-ray spectros-copy (EDX) unit (ChemiSTEM technology), a post-column energy filter system (Gatan Enfinium ER 977) with dual electron energy-loss spectroscopy (EELS) option allowing a simultaneous read-out of EDX and EELS signals at a speed of 1000 spectra per second. For data recording the microscope is equipped with an angular dark-field (ADF) scanning TEM (STEM) detector (Fischione Model 3000), on-axis triple BF, DF1, DF2 detectors, on-axis BF/DF Gatan detectors as well as a 4 megapixel CCD system (Gatan UltraScan 1000 XP-P). Typical examples of use and technical specifications for the instrument are given below

    Spectrum imaging of Helium pores in amophous Silicon-coatings

    No full text
    In order to probe the helium distribution in porous amorphous coatings of silicon grown by magnetron, we present an extraction method of the Helium signal obtained from STEM-EELS spectrum images [1]. The goal of the work is to get a rough estimation of the Helium pressure inside the pores and correlate this to the deposition parameters. For this we modified the procedure described by Walsh [2] and David et al. [3] and integrated this in MATLAB. With our present architecture it is possible to read in images in dm3 format recorded on a with DigiScan by Gatan and undergo several data treatment. For our purpose we selected centering the zero loss peak and integrating it, deconvolution, fitting of the plasmon intensity with one narrow peak at ≈ 23 eV attributed to the Silicon bulk plasmon and a wider one at ≈ 24 to 25 eV to adapt contributions from surface oxide layer and carbon contamination, and fitting of the residual intensity arsing from the He-K edge at ≈ 22 eV with a gaussian. Part of the procedure is visualized in Figure 2, which shows two spectra from the same spectrum image one at the matrix position (Figure 2 (a)) and the other at the pore center (Figure 2 (b)). The spectra were are already deconvoluted and the fit to the Silicon plasmon is plotted red and the fit for the SiO2 and the carbon contamination is plotted green. For both positions the fit is satisfactory and for the pore position and also the residual signal around 22 eV is well described by the gaussian fit.The procedure allows to plot maps of all fitting parameters and also to extract EFTEM images. Figure 1 shows (a) thickness map (b) the gaussian integral and (c) the gaussian peak position for a selected spectrum image of a single pore. The Helium density can be derived in two ways, from the ratio of the Helium K-edge intensity/ to the ZLP-intensity and by the energy shift of the edge position. Both methods suffer from large errors around 30 % so the cross check is an advantage. We will complete our results by additional tomography experiments and correlate them to compositional depth profiles measured with Rutherford backscattering
    corecore