71 research outputs found

    Solitary waves due to x(2):x(2) cascading

    Get PDF
    Solitary waves in materials with a cascaded x(2):x(2) nonlinearity are investigated, and the implications of the robustness hypothesis for these solitary waves are discussed. Both temporal and spatial solitary waves are studied. First, the basic equations that describe the x(2):x(2) nonlinearity in the presence of dispersion or diffraction are derived in the plane-wave approximation, and we show that these equations reduce to the nonlinear Schrödinger equation in the limit of large phase mismatch and can be considered a Hamiltonian deformation of the nonlinear Schrödinger equation. We then proceed to a comprehensive description of all the solitary-wave solutions of the basic equations that can be expressed as a simple sum of a constant term, a term proportional to a power of the hyperbolic secant, and a term proportional to a power of the hyperbolic secant multiplied by the hyperbolic tangent. This formulation includes all the previously known solitary-wave solutions and some exotic new ones as well. Our solutions are derived in the presence of an arbitrary group-velocity difference between the two harmonics, but a transformation that relates our solutions to zero-velocity solutions is derived. We find that all the solitary-wave solutions are zero-parameter and one-parameter families, as opposed to nonlinear-Schrödinger-equation solitons, which are a two-parameter family of solutions. Finally, we discuss the prediction of the robustness hypothesis that there should be a two-parameter family of solutions with solitonlike behavior, and we discuss the experimental requirements for observation of solitonlike behavior.Peer ReviewedPostprint (published version

    One-Dimensional Spatial Solitary Waves Due To Cascaded Second-Order Nonlinearities In Planar Waveguides

    Get PDF
    We report an experimental observation of one-dimensional spatial solitary waves due to cascaded second-order optical nonlinearities

    Cascading nonlinearities in an organic single crystal core fiber: The Cerenkov regime

    Get PDF
    The large nonlinear phase shifts imparted to the fundamental beam during Cerenkov second harmonic generation (SHG) in a DAN, 4-(N,N-dimethylamino)-3-acetamidonitrobenzene, single crystal core fiber are explained and modelled numerically. Cascading upconversion and downconversion processes leads to nonlinear phase shifts produced by the second order nonlinear coupling of the guided fundamental mode and the component of the Cerenkov second harmonic field trapped in the fiber cladding

    Competing nonlinearities in quadratic nonlinear waveguide arrays

    No full text
    We demonstrate experimentally the existence of competing focusing and defocusing nonlinearities in a double-resonant system with quadratic nonlinear response. We use an array of periodically poled coupled optical waveguides and observe inhibition of the nonlinear beam self-action independent on power. This inhibition is demonstrated in both regimes of normal and anomalous beam diffraction.We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG–Research Unit 532), the Federal Ministry of Education and Research (Innoregio-ZIK), the Australian Research Council, and the Australian Academy of Science

    Applications of cascading nonlinear optics to all-optical devices

    Get PDF
    The application of a cascaded phase shift to a fully integrated nonlinear directional coupler (NLDC) and Mach-Zehnder interferometer (MZI) is presented. It shows that for MZI, the input power was increased and the throughput was modulated between 80% and 20% of the input. For the NLDC, the switching from the cross to the bar states is clear

    Tunable generation of entangled photons in a nonlinear directional coupler

    Full text link
    The on-chip integration of quantum light sources has enabled the realization of complex quantum photonic circuits. However, for the practical implementation of such circuits in quantum information applications it is crucial to develop sources delivering entangled quantum photon states with on-demand tunability. Here we propose and experimentally demonstrate the concept of a widely tunable quantum light source based on spontaneous parametric down-conversion in a nonlinear directional coupler. We show that spatial photon-pair correlations and entanglement can be reconfigured on-demand by tuning the phase difference between the pump beams and the phase mismatch inside the structure. We demonstrate the generation of split states, robust N00N states, various intermediate regimes and biphoton steering. This fundamental scheme provides an important advance towards the realization of reconfigurable quantum circuitry

    All-optical mode mixer spatial switch based on cascading in lithium niobate

    Get PDF
    An all-optically induced spatial shift in the interference between the two lowest-order modes of a lithium niobate channel waveguide was demonstrated based on the power-dependent nonlinear phase shift induced via quadratic cascading

    Semiflexible polymer conformation, distribution and migration in microcapillary flows

    Full text link
    The flow behavior of a semiflexible polymer in microchannels is studied using Multiparticle Collision Dynamics (MPC), a particle-based hydrodynamic simulation technique. Conformations, distributions, and radial cross-streamline migration are investigated for various bending rigidities, with persistence lengths Lp in the range 0.5 < Lp/Lr < 30. The flow behavior is governed by the competition between a hydrodynamic lift force and steric wall-repulsion, which lead to migration away from the wall, and a locally varying flow-induced orientation, which drives polymer away from the channel center and towards the wall. The different dependencies of these effects on the polymer bending rigidity and the flow velocity results in a complex dynamical behavior. However, a generic effect is the appearance of a maximum in the monomer and the center-of-mass distributions, which occurs in the channel center for small flow velocities, but moves off-center at higher velocities.Comment: in press at J. Phys. Condens. Matte
    • …
    corecore