571 research outputs found

    The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body

    Get PDF
    KAR1 has been identified as an essential gene which is involved in karyogamy of mating yeast cells and in spindle pole body duplication of mitotic cells (Rose, M. D., and G. R. Fink. 1987. Cell. 48:1047-1060). We investigated the cell cycle-dependent localization of the Kar1 protein (Kar1p) and its interaction with other SPB components. Kar1p is associated with the spindle pole body during the entire cell cycle of yeast. Immunoelectron microscopic studies with anti-Kar1p antibodies or with the monoclonal antibody 12CA5 using an epitope-tagged, functional Kar1p revealed that Kar1p is associated with the half bridge or the bridge of the spindle pole body. Cdc31p, a Ca(2+)-binding protein, was previously identified as the first component of the half bridge of the spindle pole body (Spang, A., I. Courtney, U. Fackler, M. Matzner, and E. Schiebel. 1993. J. Cell Biol. 123:405-416). Using an in vitro assay we demonstrate that Cdc31p specifically interacts with a short sequence within the carboxyl terminal half of Kar1p. The potential Cdc31p-binding sequence of Kar1p contains three acidic amino acids which are not found in calmodulin-binding peptides, explaining the different substrate specificities of Cdc31p and calmodulin. Cdc31p was also able to bind to the carboxy terminus of Nuflp/Spc110p, another component of the SPB (Kilmartin, J. V., S. L. Dyos, D. Kershaw, and J. T. Finch. 1993. J. Cell Biol. 123:1175-1184). The association of Kar1p with the spindle pole body was independent of Cdc31p. Cdc31p, on the other hand, was not associated with SPBs of kar1 cells

    High-resolution study of planktic foraminifera from the eastern Mediterranean over the last 13 cal ka BP

    Get PDF
    A unique high-resolution record from the Nile prodelta has been investigated in order to study past hydrological and climatic changes in the southeastern Levantine region over the last 13 cal ka BP. To this end, we used planktic foraminifera (accumulation rates, diversity, assemblages and size properties) as bioindicators of the ecological characteristics of the water column (temperature, salinity, primary production and hydrology). These characteristics were mainly connected to Nile discharges and thermohaline circulation which in turn were controlled by various global and regional climatic forcing factors (e.g., orbital forcing, African and Indian Monsoon, North Atlantic Oscillation (NAO)). Our data showed seven main climatic periods: 1) from 13.0 to 11.5 cal ka BP encompassing the Younger Dryas and characterized by rather cold productive and mixed waters; 2) from 11.5 to 10.1 cal ka BP matching the start of the Holocene and the onset of the African Humid Period (AHP). This period was defined by surface water warming and increasing stratification due to increased river outflow; 3) from 10.1 to 6.4 cal ka BP encompassing the Sapropel deposit (S1) and matching the maximum of the AHP with drastic ecological conditions and maximum water stratification. During this period, the dominant warm taxon Globigerinoides ruber increased significantly in size and accumulation rate marking an opportunistic behavior and a total adaptation to the less saline and stratified waters. After 8.8 cal ka BP, the increase in diversity marked a progressive return to normal conditions; 4) from 6.4 to 2.9 cal ka BP, a progressive aridification period was recorded and the planktic ecosystem returned progressively to equilibrium conditions due to the recovery of thermohaline circulation after S1 and the decrease in Nile runoff; 5) from 2.9 to 1.1 cal ka BP, particular dry conditions were recorded leading to a severe drop in planktic diversity. These conditions seemed to be connected to a negative state of the NAO marking the Roman Humid Period in the western Mediterranean and being anti-phased with the southeastern Mediterranean; 6) from 1.1 to 0.54 cal ka BP, a humid period was recorded matching the Medieval Warm Anomaly and this time connected to a positive NAO. The highest foraminiferal diversity was recorded and the increase in proportions of deep dwellers and eutrophic taxa marked highly productive and mixed waters; 7) from 0.54 cal ka BP to modern time encompassing the Little Ice Age and recorded in our data by a general aridity and surface water warming

    Pre-orbiter Investigation Final Report

    Get PDF
    Analysis of photographic mapping system for Lunar Orbiter progra

    Structure of a Chlorophyll-RC I.

    Get PDF

    A family case of fertile human 45,X,psu dic(15;Y) males

    Get PDF
    We report on a familial case including four male probands from three generations with a 45,X,psu dic(15;Y)(p11.2;q12) karyotype. 45,X is usually associated with a female phenotype and only rarely with maleness, due to translocation of small Y chromosomal fragments to autosomes. These male patients are commonly infertile because of missing azoospermia factor regions from the Y long arm. In our familial case we found a pseudodicentric translocation chromosome, that contains almost the entire chromosomes 15 and Y. The translocation took place in an unknown male ancestor of our probands and has no apparent effect on fertility and phenotype of the carrier. FISH analysis demonstrated the deletion of the pseudoautosomal region 2 (PAR2) from the Y chromosome and the loss of the nucleolus organizing region (NOR) from chromosome 15. The formation of the psu dic(15;Y) chromosome is a reciprocal event to the formation of the satellited Y chromosome (Yqs). Statistically, the formation of 45,X,psu dic(15;Y) (p11.2;q12) is as likely as the formation of Yqs. Nevertheless, it has not been described yet. This can be explained by the dicentricity of this translocation chromosome that usually leads to mitotic instability and meiotic imbalances. A second event, a stable inactivation of one of the two centromeres is obligatory to enable the transmission of the translocation chromosome and thus a stably reduced chromosome number from father to every son in this family

    Thirteen thousand years of southeastern Mediterranean climate variability inferred from an integrative planktic foraminiferal-based approach

    Get PDF
    Over the past 13 ka, the hydrology for the southeastern Mediterranean was mainly regulated by Nile River runoff, which in turn was controlled by climate forcing. Being affected by orbital forcing, and the position of the Intertropical Convergence Zone (ITCZ), planktic foraminiferal data (assemblages, stable isotopes, and size properties) indicate three major periods. (1) From 13.0 to 11.5 ka, the upper water column was well-mixed, cold, and productive. (2) From 11.5 to 6.4 ka, hydrology and foraminifers were affected by intensified monsoonal circulation. The enhanced size of Globigerinoides ruber is interpreted as a response to environmental stress caused by low-saline waters. (3) After 6.4 ka, the southward retreat of the ITCZ caused a decrease in freshwater discharge and hence a return to ecological equilibrium. A drop in foraminifer diversity from 2.9 to 1.1 ka was related to more arid conditions, and limited supply of nutrients from the Nile River. We suggest a link to a negative North Atlantic Oscillation (NAO) marking the Roman Humid Period in the western Mediterranean, and in anti-phase with the southeastern Mediterranean aridity. Because Nile River runoff exerted major control on surface hydrology, a connection to Indian and Pacific climate systems partially controlling precipitation over the Nile catchment area is hypothesized. From 1.1 to 0.54 ka, high foraminifer diversity indicates humid conditions synchronous to the Medieval Climate Anomaly under a positive NAO state. Over the past 0.54 ka encompassing the Little Ice Age, another arid period is indicated by a drop in foraminifer diversity

    Scaling percentages and distributional patterns of benthic foraminifera with flux rates of organic carbon

    Get PDF
    Seafloor organic matter flux from marine primary productivity is quantified, and the range of annual flux rates is calculated and compared to the counts of benthic foraminifera at 382 surface sediment stations from the equatorial Guinea Basin to the Arctic Ocean. Benthic foraminifera show high variability in flux range dependent distributional patterns, with maximum deviations at lowest percentages. The occurrence of a single species covers flux ranges within one to three orders of magnitude. Only a small number of species shows a correlation of this broad range of organic fluxes versus percentages in a count. For C. wuellerstorfi a functional relationship for the recalculation of flux rates from percentages in a count can be given within a standard deviation below 2 g organic carbon [m 2 yr 1]. However, such functions have to be restricted to a specific size range counted. The patterns of dominance more closely scale the environmental optimum of the species in general. For interspecific combinations, these patterns identify the ranges of overlap, where it is impossible to distinguish between higher or lower fluxes on the basis of faunal composition. This is quantified for the co-occurrence of C. wuellerstorfi and U. peregrina near 20% for one species. On an ocean wide scale, a number of taxa can be used to define threshold values for the nutritive needs of the assemblages, most pronounced within annual flux ranges at 2-3 g org. C [m-2]. Different trophic needs of species can be attributed to their infaunal, epibenthic, or opportunistic behavior respectively, and examples for the flux dependent takeover in dominance are given. These quantifications may offer approximations for flux rate dependent faunal patterns in surface sediments and for the detection of flux rate dependent faunal fluctuations in the Quaternary record
    • …
    corecore