2,670 research outputs found

    Spray automated balancing of rotors: Methods and materials

    Get PDF
    The work described consists of two parts. In the first part, a survey is performed to assess the state of the art in rotor balancing technology as it applies to Army gas turbine engines and associated power transmission hardware. The second part evaluates thermal spray processes for balancing weight addition in an automated balancing procedure. The industry survey reveals that: (1) computerized balancing equipment is valuable to reduce errors, improve balance quality, and provide documentation; (2) slow-speed balancing is used exclusively, with no forseeable need for production high-speed balancing; (3) automated procedures are desired; and (4) thermal spray balancing is viewed with cautious optimism whereas laser balancing is viewed with concern for flight propulsion hardware. The FARE method (Fuel/Air Repetitive Explosion) was selected for experimental evaluation of bond strength and fatigue strength. Material combinations tested were tungsten carbide on stainless steel (17-4), Inconel 718 on Inconel 718, and Triballoy 800 on Inconel 718. Bond strengths were entirely adequate for use in balancing. Material combinations have been identified for use in hot and cold sections of an engine, with fatigue strengths equivalent to those for hand-ground materials

    The strong Novikov conjecture for low degree cohomology

    Get PDF
    We show that for each discrete group G, the rational assembly map K_*(BG) \otimes Q \to K_*(C*_{max} G) \otimes \Q is injective on classes dual to the subring generated by cohomology classes of degree at most 2 (identifying rational K-homology and homology via the Chern character). Our result implies homotopy invariance of higher signatures associated to these cohomology classes. This consequence was first established by Connes-Gromov-Moscovici and Mathai. Our approach is based on the construction of flat twisting bundles out of sequences of almost flat bundles as first described in our previous work. In contrast to the argument of Mathai, our approach is independent of (and indeed gives a new proof of) the result of Hilsum-Skandalis on the homotopy invariance of the index of the signature operator twisted with bundles of small curvature.Comment: 11 page

    Molecular theory of hydrophobic mismatch between lipids and peptides

    Full text link
    Effects of the mismatch between the hydrophobic length, d, of transmembrane alpha helices of integral proteins and the hydrophobic thickness, D_h, of the membranes they span are studied theoretically utilizing a microscopic model of lipids. In particular, we examine the dependence of the period of a lamellar phase on the hydrophobic length and volume fraction of a rigid, integral, peptide. We find that the period decreases when a short peptide, such that d<D_h, is inserted. More surprising, we find that the period increases when a long peptide, such that d>D_h, is inserted. The effect is due to the replacement of extensible lipid tails by rigid peptide. As the peptide length is increased, the lamellar period continues to increase, but at a slower rate, and can eventually decrease. The amount of peptide which fails to incorporate and span the membrane increases with the magnitude of the hydrophobic mismatch |d-D_h|. We explicate these behaviors which are all in accord with experiment. Predictions are made for the dependence of the tilt of a single trans-membrane alpha helix on hydrophobic mismatch and helix density.Comment: 14 pages, 5 figure

    Lattice gas description of pyrochlore and checkerboard antiferromagnets in a strong magnetic field

    Full text link
    Quantum Heisenberg antiferromagnets on pyrochlore and checkerboard lattices in a strong external magnetic field are mapped onto hard-core lattice gases with an extended exclusion region. The effective models are studied by the exchange Monte Carlo simulations and by the transfer matrix method. The transition point and the critical exponents are obtained numerically for a square-lattice gas of particles with the second-neighbor exclusion, which describes a checkerboard antiferromagnet. The exact structure of the magnon crystal state is determined for a pyrochlore antiferromagnet.Comment: 11 pages, accepted versio

    Quantum interface unbinding transitions

    Full text link
    We consider interfacial phenomena accompanying bulk quantum phase transitions in presence of surface fields. On general grounds we argue that the surface contribution to the system free energy involves a line of singularities characteristic of an interfacial phase transition, occurring below the bulk transition temperature T_c down to T=0. This implies the occurrence of an interfacial quantum critical regime extending into finite temperatures and located within the portion of the phase diagram where the bulk is ordered. Even in situations, where the bulk order sets in discontinuously at T=0, the system's behavior at the boundary may be controlled by a divergent length scale if the tricritical temperature is sufficiently low. Relying on an effective interfacial model we compute the surface phase diagram in bulk spatial dimensionality d2d\geq 2 and extract the values of the exponents describing the interfacial singularities in d3d\geq 3

    Heterogeneous nucleation near a metastable vapour-liquid transition: the effect of wetting transitions

    Full text link
    Phase transformations such as freezing typically start with heterogeneous nucleation. Heterogeneous nucleation near a wetting transition, of a crystalline phase is studied. The wetting transition occurs at or near a vapour-liquid transition which occurs in a metastable fluid. The fluid is metastable with respect to crystallisation, and it is the crystallisation of this fluid phase that we are interested in. At a wetting transition a thick layer of a liquid phase forms at a surface in contact with the vapour phase. The crystalline nucleus is then immersed in this liquid layer, which reduces the free energy barrier to nucleation and so dramatically increases the nucleation rate. The variation in the rate of heterogeneous nucleation close to wetting transitions is calculated for systems in which the longest-range forces are dispersion forces.Comment: 11 pages including 3 figure

    Liquid drop in a cone - line tension effects

    Full text link
    The shape of a liquid drop placed in a cone is analyzed macroscopically. Depending on the values of the cone opening angle, the Young angle and the line tension four different interfacial configurations may be realized. The phase diagram in these variables is constructed and discussed; it contains both the first- and the second-order transition lines. In particular, the tricritical point is found and the value of the critical exponent characterizing the behaviour of the system along the line of the first-order transitions in the neighbourhood of this point is determined.Comment: 11 pages, 4 figure

    Wetting on a spherical wall: influence of liquid-gas interfacial properties

    Full text link
    We study the equilibrium of a liquid film on an attractive spherical substrate for an intermolecular interaction model exhibiting both fluid-fluid and fluid-wall long-range forces. We first reexamine the wetting properties of the model in the zero-curvature limit, i.e., for a planar wall, using an effective interfacial Hamiltonian approach in the framework of the well known sharp-kink approximation (SKA). We obtain very good agreement with a mean-field density functional theory (DFT), fully justifying the use of SKA in this limit. We then turn our attention to substrates of finite curvature and appropriately modify the so-called soft-interface approximation (SIA) originally formulated by Napi\'orkowski and Dietrich [Phys. Rev. B 34, 6469 (1986)] for critical wetting on a planar wall. A detailed asymptotic analysis of SIA confirms the SKA functional form for the film growth. However, it turns out that the agreement between SKA and our DFT is only qualitative. We then show that the quantitative discrepancy between the two is due to the overestimation of the liquid-gas surface tension within SKA. On the other hand, by relaxing the assumption of a sharp interface, with, e.g., a simple smoothing of the density profile there, markedly improves the predictive capability of the theory, making it quantitative and showing that the liquid-gas surface tension plays a crucial role when describing wetting on a curved substrate. In addition, we show that in contrast to SKA, SIA predicts the expected mean-field critical exponent of the liquid-gas surface tension

    3D wedge filling and 2D random-bond wetting

    Get PDF
    Fluids adsorbed in 3D wedges are shown to exhibit two types of continuous interfacial unbinding corresponding to critical and tricritical filling respectively. Analytic solution of an effective interfacial model based on the transfer-matrix formalism allows us to obtain the asymptotic probability distribution functions for the interfacial height when criticality and tricriticality are approached. Generalised random walk arguments show that, for systems with short-ranged forces, the critical singularities at these transitions are related to 2D complete and critical wetting with random bond disorder respectively.Comment: 7 pages, 3 figures, accepted for publication in Europhysics Letter
    corecore