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PACS. 68.08.Bc — Wetting.
PACS. 05.70.Np — Interface and surface thermodynamics.
PACS. 68.08.De — Structure: measurements and simulations.

Abstract. — Fluids adsorbed in 3D wedges are shown to exhibit two types of continuous
interfacial unbinding corresponding to critical and tricritical filling, respectively. Analytic solu-
tion of an effective interfacial model based on the transfer-matrix formalism allows us to obtain
the asymptotic probability distribution functions for the interfacial height when criticality and
tricriticality are approached. Generalised random-walk arguments show that, for systems with
short-ranged forces, the critical singularities at these transitions are related to 2D complete
and critical wetting with random-bond disorder, respectively.

Recent studies of filling transitions for fluids in 3D wedges [1,2] have revealed the much
stronger influence of interfacial fluctuations compared with wetting at flat and rough sub-
strates [3—7]. Encouragingly effective Hamiltonian predictions for the critical exponents at
continuous (critical) wedge filling with short-ranged forces have been confirmed in large-
scale Ising model simulation studies [8]. Similar experimental verification of the predicted
geometry-dominated adsorption isotherms at complete wedge filling [9] raise hopes that the
filling transition itself and related fluctuation effects will be observable in the laboratory.
Here we further develop the fluctuation theory of 3D filling and show that there is a rather
deep and previously unrecognized connection with the theory of wetting in 2D systems with
random-bond (RB) disorder. Our findings are based on the analytical solution of an effective
model of 3D wedge filling and also generalised random-walk arguments [10]. First we show
that there are actually two types of continuous-filling behaviour corresponding to critical and
tricritical transitions, respectively, with the latter having stronger fluctuation effects. The
phase diagram for these transitions together with the classification of fluctuation regimes and
the allowed values of critical exponents resemble very closely those predicted for 2D wetting.
More precisely 3D critical filling is related to 2D complete wetting whilst 3D tricritical filling
is related to 2D critical wetting. Remarkably the particular value of the 3D wedge wandering
exponent for pure systems (thermal disorder) implies that criticality at tricritical and critical
filling is related to predictions for 2D critical and complete wetting with RB disorder.

Consider the interface between a bulk vapour at temperature T and saturation pressure
with a 3D wedge characterised by a tilt angle « (see fig. 1). Macroscopic arguments dictate
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Fig. 1 — Schematic illustration of a typical interfacial configuration and relevant length scales for a
fluid adsorption in a 3D wedge. The thick line marks the position of the wedge bottom.

that the wedge is partially filled by liquid if the contact angle 8 > « and completely filled
if # < «a [11] and is fully supported by both interfacial Hamiltonian [12] and exact Ising
studies [13]. The filling transition refers to the change from microscopic to macroscopic liquid
adsorption as T' — T, at which 6(Ty) = «, and may be first order or continuous (critical
filling). Both these transitions can be viewed as the unbinding of the liquid-vapour interface
from the wedge bottom. Characteristic length scales are the mean interfacial height above
the wedge bottom Iy, the roughness £, and the longitudinal correlation length &,, measuring
fluctuations along the wedge (see fig. 1). The relevant scaling fields at critical filling are § — «
and the bulk ordering field (partial pressure) h. In our discussion of filling we shall work
exclusively at bulk coexistence (h = 0) since it is here that the connection with RB wetting
emerges. However, calculations away from coexistence are not in any way problematic. At
coexistence we define critical exponents by Iy ~ (0 — a) W and &, ~ (0 — a)™"». The
roughness can be related to &, by the scaling relationship

EL~ &Y, (1)

where (y is the wedge wandering exponent.

The liquid-vapour interface across the wedge is aproximately flat and soft-mode fluctua-
tions arise from local translations in the height of the filled region along the wedge [1]. The
pseudo—one-dimensional nature of these means that (y is greater than the wandering expo-
nent defined for the asymptotically flat free interface (5 in a 3D system. For systems with
sufficiently short-ranged forces critical filling is fluctuation-dominated (i.e. &, ~ Iy ) and
dimensional reduction arguments lead to the identification [2]:

_ G2
1+¢—C

with (2 the 2D free-interface wandering exponent. Thus for pure (thermal) systems for which
Ci = (3—d)/2 for d < 3, the 3D wedge wandering exponent (i = 1/3. In the fluctuation-
dominated regime the value of (y determines the other exponents, in particular

w (2)

_ 1
2w

with Bw = v = {wvy. Thus, for thermal forces v, = 3/4, a value verified in Ising simulation
studies [8].

There is, however, another example of continuous filling with even larger fluctuations char-
acterized by different scaling fields and critical exponents. This corresponds to tricritical filling

3)

Vy
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and there are two ways the transition may be induced. The first mechanism occurs for wedges
made from walls which themselves exhibit weakly first order wetting transitions [1]. The filling
transition in these systems will be first order if & < a* and critical for a > a*, where o is
the tricritical wedge angle. A second mechanism exists, however, which is more practicable
in simulation studies. Imagine a wedge made from a homogeneous chemical material which
exhibits critical filling. Now micropattern a stripe along the wedge bottom (see fig. 1), so as
to weaken the local wall-fluid intermolecular potential and therefore strengthen the interfacial
binding potential, since locally liquid adsorption will not be favoured and consequently the
vapour-liquid interface is more likely to be localized near the wedge bottom. This situation
can be easily engineered in Ising model studies by modifying the strength of the surface field
near the wedge bottom and indeed has been done on planar substrates in the laboratory. With
this modification it may be possible to bind the interface to the wedge bottom even at the
filling boundary 8 = a and at bulk coexistence. A continuous tricritical transition may then
be induced as the strength of the modified wedge potential approaches a tricritical value.
For thermal systems, both critical and tricritical transitions can be modelled by the wedge

Hamiltonian [1]
vl = [ dy{%(%) +vw<zo>}, @

where lo(y) is the local height of the interface at position y along the wedge bottom and
3 is the liquid-vapor surface tension. This expression arises from the identification of the
interfacial breather modes which translate the interface up and down the sides of the confining
geometry, as the only relevant fluctuations for the critical-filling transition, and corresponds
to the excess free-energy contribution of a breather-mode configuration with respect to the
planar case obtained from the usual capillary-wave model [1]. Note that the effective bending
term resisting fluctuations along the wedge is proportional to the local interfacial height since
the interfacial cross-section has a length 2lp/c«. At bulk coexistence, the effective binding
potential Viy (Ip), up to unimportant additive constants, is given by [1]

20" = a%)lo + AV (lo), (5)

Viv (lo) =~
where AVyy (Ip) has a hard-wall repulsion for I < 0 and a long-ranged tail which decays
when [y — oco. For short-ranged forces this can be modelled as a contact-like potential with
strength u (i.e. AVyy ~ —ud(lp), where §(x) is Dirac’s delta function). In general, there will
be a tricritical value u, such that for u < u. the interface unbinds from the wedge bottom when
0 — « whilst for u > wu,, the interface remains bound to the wall in the same limit. A section
of the phase diagram (at h = 0) for this is presented in fig. 2(a) and shows two continuous-
filling transitions. Critical filling corresponds to 8 — « for u < u,. (route (iii)) and has the
critical exponents described above. Tricritical filling corresponds to any thermodynamic path
for which u — u. and § — « (routes (i) and (ii), for example). Along the path § = « the
relevant length scales diverge as

lW ~ (u - uc)_ﬂ‘jv ) gu ~ (u - uc)_V; (6)

and £, ~ &S&/, with (jj, the tricritical wandering exponent. These expressions define new
critical exponents which are distinct from those at critical filling. Again for short-ranged forces
we anticipate that the transition is fluctuation-dominated with Iy ~ £, and 8y, = (jvy.
More generally, in the vicinity of the tricritical point (and at h = 0) we anticipate scaling,
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Fig. 2 — Phase diagrams for (a) filling and (b) wetting transitions in terms of the ordering fields 6 — «
and h and the contact-like potential strengths v and w. The thick and dashed lines in both diagrams
correspond to continuous and first-order boundaries between bound and unbound interfacial states,
respectively. The arrows show representative paths along which continuous unbinding occurs. The
filled circles represent the tricritical-filling and critical-wetting points, respectively.

e.g. &y~ |u—u| Vs A (0 — a)|u— uc|_A*] with the gap exponent A*. Thus, along route (ii)
&y~ (0 — a)_V;/A*-

To continue we evaluate these exponents for thermal systems by explicit transfer-matrix
analysis before recasting them more generally in terms of the wandering exponent (. In the
continuum limit the partition function is defined as a path integral [14]:

Zlly 1o, Y] = / Dl expl—Hw [lo]l, (7)

where Y is the wedge length, I, = 1p(0) and I, = lo(Y') are the endpoint heights and we have
set kT = 1 for convenience. Due to the presence of a position-dependent stiffness some
care must be taken with the definition of the path integral. This turns out to be of crucial
importance for the the evaluation of the exponents at tricritical (but not critical) filling. This
problem was already pointed out in ref. [15] and is related to the well-known ordering problem
in the quantization of classical Hamiltonians with position-dependent masses. Similar issues
also arise in solid-state physics [16]. Borrowing from the methods used to overcome these
difficulties we use the following definition:

N
Zlyy 10, Y] = Nninoo/dll...dzN,l I 55,1521, Y/N), (8)
j=1

where Iy =1, and Iy =1, and K(I,1',y) is defined as
=V VI

any ay

K(l?llvy) = (l - l/)2 - yVW(l)

exp

In the continuum limit the partition function becomes
Z(ly1a,Y) =Y n(l) 05 (la)e™ Y, (10)

where the complete orthonormal set of functions satisfies

a 010 3a
(—Ea [75}+VW(Z)—@>¢=E¢- (11)
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Fig. 3 — Scaled interfacial height PDF Pw (c(u — uc)lo) as a function of the scaled wedge midpoint
interfacial height c¢(u — uc)lo for € = a. Inset: plot of the scaled PDF along routes (ii) and (iii) in
fig. 2(a), i.e. for e = 1.086 (continuous line) and € ~ 1.639 (dot-dashed line), respectively.

In the thermodynamic limit Y — oo we obtain the probability distribution function (PDF)
for the midpoint interfacial height Py (lp) = |10(lo)|* and the longitudinal correlation length
& = 1/(E1 — Ep). We have obtained the analytical solution to the transfer-matrix operator
for short-ranged forces determining the crossover from tricritical to critical filling. We present
without proof some of our findings. A more complete and detailed description of our results
will be published elsewhere.

Along route (i) we find that there is only one bound solution to eq. (11) for u > u,. with
Eoy o (u — u.)? and associated PDF

PW (lo) 0.8 loAiz[C(u — uc)l()] (12)

with ¢ an unimportant constant while Ai(z) is the Airy function. Thus, Iy ~ &) o (u—u.)~!
and &, oc (u—u.)"? identifying 3, = 1, v = 3 and confirming that the tricritical wandering
exponent coincides with the critical wandering exponent (};; = (w = 1/3. A numerical plot
of the PDF is shown in fig. 3. On the other hand, the scaling of the PDF along the route (ii)
is given by

2
Py (lp) o lgexp {% — %] Hg <\/§2—Z — %) ) (13)

where & = N7V2[(0/a)? — 1]7Y4, s = €2/4 — 1/2 with ¢ = —XEy€3 /o =~ 1.086 and H,(2)
is the Hermite function [17]. The value of € is obtained by imposing appropriate boundary
conditions at Iy = 0. Thus along this route Iy ~ £, « (6 — 04)’1/4 similar to critical filling.
From analysis of the spectrum it is also possible to show that £, o (9—a)_3/4. As anticipated,
in the vicinity of the tricritical point the divergent length scales show scaling with tricritical
gap exponent A* = 4. Whilst the exponents for critical filling are already known the exact
scaling form for the PDF has not been given previously. For thermodynamic paths (iii) far
from the tricritical point we have found that the scaling of the PDF is of the form shown in
eq. (13) but with € ~ 1.639. We remark that the PDFs at critical and tricritical filling have
distinct short-distance expansions when ly/lyy — 0 and our results (cubic and linear powers,
respectively) are consistent with exact thermodynamic requirements [2].
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We can now place the results for tricritical filling in a more general context. For short-
ranged forces the tricritical transition belongs to a general class of strong-fluctuation regime
interfacial unbinding since the transition occurs at a finite value of the binding potential w.
The critical singularities at such transitions can be very elegantly modelled using random-
walk methods which previously have been succesfully used to understand 2D critical wetting
(at flat walls) [10]. By modelling the interface as a sequence of bound and unbound regions
(the so-called bead-necklace picture), the critical exponent for the correlation length along the
interface at the strong-fluctuation transition can be related to the appropriate wandering expo-
nent. Details will be published elsewhere, so we just mention our main results. Following this
argument for the tricritical-filling transition and making allowance for the position-dependent
stiffness, we find
T T 26 T T 1— 26w
from which all other critical exponents follow. For thermal systems, (i = 1/3, implying
vy = 3 and A* = 4, in agreement with our explicit calculations. Equations (12), (13) and (14)
are the main results of our paper and together with eq. (3) completely determine the critical
singularities at fluctuation-dominated 3D filling occuring at bulk coexistence.

A remarkable connection with the theory of 2D complete and critical wetting is now
apparent. These transitions correspond to the continuous unbinding of an interface from a
planar wall and can be modelled by the interfacial Hamiltonian

H[l]:/dx %(%)QJrW(Z)], (15)

where [(z) is the interfacial height at a position x along the wall, Y is the 2D stiffness and
W (1) is the binding potential. In general W (I) = hl + AW () where h is proportional to the
bulk ordering field (partial pressure) and for short-ranged forces AW(l) can be modelled as
a contact potential of strength w (i.e. AW(l) = —wd(l)). Disorder arising from bulk random
bonds can also be allowed for by including a stochastic term in W (). The phase diagram
is shown in fig. 2(b), and shows two continuous transitions referred to as complete wetting
(path (iii)) and critical wetting (e.g., path (i) and (ii)), at which the mean interfacial height
lx, roughness £, and transverse correlation length £ all diverge. For short-ranged forces

(14)

the transitions are fluctuation-dominated and I, ~ £, ~ fﬁz. More specifically, for complete
wetting we write & ~ R™VI” whilst for critical wetting & ~ (w—w:)™"I with associated gap
exponent A off coexistence. The values of these exponents can be expressed explicitly in terms

of the wandering exponent (s as [18]
1 1 2-(
_ = A= .
-6 TG 1—¢
There is therefore a qualitative and quantitative connection between critical singularities at
3D filling and 2D wetting. The phase diagrams are equivalent (see fig. 2) with the field § — «
playing the role of the ordering field h at wetting. Further, writing the 2D wetting exponents

in terms of ¢z, e.g. vj® = v[°(C2), etc., we have from egs. (3) and (14) the dimensional
reduction relations for the critical exponents

Uy = uﬁo(%w) v vy = (20w) . AT = A20w). (17)

Most remarkably for thermal forces the numerical value 2¢yw = 2/3 means that 3D filling is
related to 2D wetting with RB disorder, since ¢, = 2/3 for this case [19].

I/C‘O*
o=

(16)
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A full account of our study, including the analysis of the presence of long-ranged forces,
will be presented elsewhere.

In summary, we have identified a second example of continuous-filling transition corre-
sponding to tricritical behaviour. For systems with short-ranged forces and thermal disorder
only we have exactly found the critical singularities and associated probability distribution
function for the interfacial height. A random-walk analysis reveals a remarkable connection
between the critical exponents for thermal 3D filling and random-bond 2D wetting for systems
with short-ranged forces. These predictions may certainly be tested in Ising model simulation
studies and would be a stringent test of the theory of 3D wedge filling. Experimental studies
of tricritical (and critical) filling similar to those already performed for complete filling would
be very welcome.

* ok x

JMR-E acknowledges financial support from the European Commission under Contract
MEIF-CT-2003-501042.

REFERENCES

[1] Parry A. O., RascoN C. and Woob A. J., Phys. Rev. Lett., 85 (2000) 345; PARRY A. O.,
Woobp A. J. and Rascon C., J. Phys. Condens. Maiter, 13 (2001) 4591.

[2] GREENALL M. J., PARRY A. O. and ROMERO-ENRIQUE J. M., J. Phys. Condens. Matter, 16
(2004) 2515.

[3] DIETRICH S., in Phase Transitions and Critical Phenomena, edited by DomB C. and LEBOWITZ
J. L., Vol. 12 (Academic Press, London) 1988.

[4] Evans R., in Liquids at Interfaces, Les Houches Sessions XLVIII, edited by CHARVOLIN J.,
JOANNY J. F. and ZINN-JUSTIN J. (North-Holland Publ. Co., Amsterdam) 1990.

[5] ScHicK M., in Liquids at Interfaces, Les Houches Sessions XLVIII, edited by CHARVOLIN J.,
JoAaNNY J. F. and ZINN-JUSTIN J. (North-Holland Publ. Co., Amsterdam) 1990.

[6] SArRTONI G., STELLA A. L., GIUGLIARELLI G. and D’ORsOGNA M. R., Europhys. Lett., 39
(1997) 633.

[7] KARDAR M. and INDEKEU J. O., Europhys. Lett., 12 (1990) 161.
[8] MiLcHEV A., MULLER M., BINDER K. and LANDAU D. P., Phys. Rev. Lett., 90 (2003) 136101.
[9] BruscHI L., CARLIN A. and MISTURA G., Phys. Rev. Lett., 89 (2002) 166101.

[10] FisHER M. E., J. Chem. Soc., Faraday Trans. 2, 82 (1986) 1589; FISHER M. E., J. Stat. Phys.,

34 (1984) 667.

[11] Concus P. and FINN R., Proc. Natl. Acad. Sci. U.S.A., 63 (1969) 292.

[12] REJMER K., DIETRICH S. and NAPIORKOWSKI M., Phys. Rev. E, 60 (1999) 4027.

[13] ABRAHAM D. B. and MACIOLEK A., Phys. Rev. Lett., 89 (2002) 286101.

[14] BURKHARDT T. W., Phys. Rev. B, 40 (1989) 6987.

[15] BEDNORZ A. and NAPIORKOWSKI M., J. Phys. A, 33 (2000) L353.

[16] THOMSEN J., EINEVOLL G. T. and HEMMER P. C., Phys. Rev. B, 39 (1989) 12783;

CHETOUANI L., DEKAR L. and HAMMANN T. F., Phys. Rev. A, 52 (1995) 82.

[17] LEBEDEV N. N., Special Functions and Their Applications (Dover Publications Inc., New York)
1972.

[18] LipowsKy R. and FISHER M. E., Phys. Rev. Lett., 56 (1986) 472.

[19] Hust D. A., HENLEY C. L. and FISHER D. S., Phys. Rev. Lett., 55 (1985) 2924.



