1,766 research outputs found
Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells
Exocytosis of secretory granules by adrenal chromaffin cells is blocked by the tetanus toxin light chain in a zinc specific manner. Here we show that cellular synaptobrevin is almost completely degraded by the tetanus toxin light chain within 15 min. We used highly purified adrenal secretory granules to show that synaptobrevin, which can be cleaved by the tetanus toxin light chain, is localized in the vesicular membrane. Proteolysis of synaptobrevin in cells and in secretory granules is reversibly inhibited by the zinc chelating agent dipicolinic acid. Moreover, cleavage of synaptobrevin present in secretory granules by the tetanus toxin light chain is blocked by the zinc peptidase inhibitor captopril and by synaptobrevin derived peptides. Our data indicate that the tetanus toxin light chain acts as a zinc dependent protease that cleaves synaptobrevin of secretory granules, an essential component of the exocytosis machinery in adrenal chromaffin cells
The co-chaperone p23 controls root development through the modulation of auxin distribution in the Arabidopsis root meristem.
Homologues of the p23 co-chaperone of HSP90 are present in all eukaryotes, suggesting conserved functions for this protein throughout evolution. Although p23 has been extensively studied in animal systems, little is known about its function in plants. In the present study, the functional characterization of the two isoforms of p23 in Arabidopsis thaliana is reported, suggesting a key role of p23 in the regulation of root development. Arabidopsis p23 mutants, for either form, show a short root length phenotype with a reduced meristem length. In the root meristem a low auxin level associated with a smaller auxin gradient was observed. A decrease in the expression levels of PIN FORMED PROTEIN (PIN)1, PIN3, and PIN7, contextually to an inefficient polar localization of PIN1, was detected. Collectively these results suggest that both Arabidopsis p23 isoforms are required for root growth, in particular in the maintenance of the root meristem, where the proteins are located
Analysis of Signaling Endosome Composition and Dynamics Using SILAC in Embryonic Stem Cell-Derived Neurons
Neurons require efficient transport mechanisms such as fast axonal transport to ensure neuronal homeostasis and survival. Neurotrophins and their receptors are conveyed via fast axonal retrograde transport of signaling endosomes to the soma, where they elicit transcriptional responses. Despite the essential roles of signaling endosomes in neuronal differentiation and survival, little is known about their molecular identity, dynamics, and regulation. Gaining a better mechanistic understanding of these organelles and their kinetics is crucial, given the growing evidence linking vesicular trafficking deficits to neurodegeneration. Here, we exploited an affinity purification strategy using the binding fragment of tetanus neurotoxin (HCT) conjugated to monocrystalline iron oxide nanoparticles (MIONs), which in motor neurons, is transported in the same carriers as neurotrophins and their receptors. To quantitatively assess the molecular composition of HCT-containing signaling endosomes, we have developed a protocol for triple Stable Isotope Labeling with Amino acids in Cell culture (SILAC) in embryonic stem cell-derived motor neurons. After HCT internalization, retrograde carriers were magnetically isolated at different time points and subjected to mass-spectrometry and Gene Ontology analyses. This purification strategy is highly specific, as confirmed by the presence of essential regulators of fast axonal transport in the make-up of these organelles. Our results indicate that signaling endosomes undergo a rapid maturation with the acquisition of late endosome markers following a specific time-dependent kinetics. Strikingly, signaling endosomes are specifically enriched in proteins known to be involved in neurodegenerative diseases and neuroinfection. Moreover, we highlighted the presence of novel components, whose precise temporal recruitment on signaling endosomes might be essential for proper sorting and/or transport of these organelles. This study provides the first quantitative proteomic analysis of signaling endosomes isolated from motor neurons and allows the assembly of a functional map of these axonal carriers involved in long-range neuronal signaling
Functional characterization of the catalytic site of the tetanus toxin light chain using permeabilized adrenal chromaffin cells
The molecular events underlying the inhibition of exocytosis by tetanus toxin were investigated in permeabilized adrenal chromaffin cells. We found that replacement of amino acid residues within the putative zinc binding domain of the tetanus toxin light chain such as of histidine (position 233) by cysteine or valine, or of glutamate (position 234) by glutamine completely abolished the effect of the light chains on Ca2+ induced catecholamine release. Dipicolinic acid, a strong chelating agent for zinc, also prevented the effect of the tetanus toxin light chain. Zn2+ and, less potently Cu2+ and Ni2+, but not Cd2+ and Co2+, restored the activity of the neurotoxin. These data show that zinc and the putative zinc binding domain constitute the active site of the tetanus toxin light chain. Neither captopril, an inhibitor of synaptobrevin cleavage nor peptides spanning the site of synaptobrevins cleaved by the tetanus toxin in neurons, prevented the inhibition of Ca2+ induced catecholamine release by the tetanus toxin light chain. This suggests that synaptobrevins are not a major target of tetanus toxin in adrenal chromaffin cells
Mining livestock genome datasets for an unconventional characterization of animal DNA viromes
Whole genome sequencing (WGS) datasets, usually generated for the investigation of the individual animal genome, can be used for additional mining of the fraction of sequencing reads that remains unmapped to the respective reference genome. A significant proportion of these reads contains viral DNA derived from viruses that infected the sequenced animals. In this study, we mined more than 480 billion sequencing reads derived from 1471 WGS datasets produced from cattle, pigs, chickens and rabbits. We identified 367 different viruses among which 14, 11, 12 and 1 might specifically infect the cattle, pig, chicken and rabbit, respectively. Some of them are ubiquitous, avirulent, highly or potentially damaging for both livestock and humans. Retrieved viral DNA information provided a first unconventional and opportunistic landscape of the livestock viromes that could be useful to understand the distribution of some viruses with potential deleterious impacts on the animal food production systems
Investigation of ABO Gene Variants across More Than 60 Pig Breeds and Populations and Other Suidae Species Using Whole-Genome Sequencing Datasets
Polymorphisms in the human ABO gene determine the major blood classification system based on the three well-known forms: A; B; and O. In pigs that carry only two main alleles in this gene (A and O), we still need to obtain a more comprehensive distribution of variants, which could also impact its function. In this study, we mined more than 500 whole-genome sequencing datasets to obtain information on the ABO gene in different Suidae species, pig breeds, and populations and provide (i) a comprehensive distribution of the A and O alleles, (ii) evolutionary relationships of ABO gene sequences across Suidae species, and (iii) an exploratory evaluation of the effect of the different ABO gene variants on production traits and blood-related parameters in Italian Large White pigs. We confirmed that allele O is likely under balancing selection, present in all Sus species investigated, without being fixed in any of them. We reported a novel structural variant in perfect linkage disequilibrium with allele O that made it possible to estimate the evolutionary time window of occurrence of this functional allele. We also identified two single nucleotide polymorphisms that were suggestively associated with plasma magnesium levels in pigs. Other studies can also be constructed over our results to further evaluate the effect of this gene on economically relevant traits and basic biological functions
Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells
Neuronal communication and endocrine signaling are fundamental for integrating
the function of tissues and cells in the body. Hormones released by endocrine
cells are transported to the target cells through the circulation. By contrast, transmitter
release from neurons occurs at specialized intercellular junctions, the synapses.
Nevertheless, the mechanisms by which signal molecules are synthesized,
stored, and eventually secreted by neurons and endocrine cells are very similar.
Neurons and endocrine cells have in common two different types of secretory
organelles, indicating the presence of two distinct secretory pathways. The synaptic
vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the
secretory granules (also referred to as dense core vesicles, because of their electron
dense content) are filled with neuropeptides and amines. In endocrine cells, peptide
hormones and amines predominate in secretory granules. The function and content
of vesicles, which share antigens with synaptic vesicles, are unknown for most
endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain
GABA, which may be involved in intrainsular signaling.'
Exocytosis of both synaptic vesicles and secretory granules is controlled by
cytoplasmic calcium. However, the precise mechanisms of the subsequent steps,
such as docking of vesicles and fusion of their membranes with the plasma membrane,
are still incompletely understood. This contribution summarizes recent observations
that elucidate components in neurons and endocrine cells involved in
exocytosis. Emphasis is put on the intracellular aspects of the release of secretory
granules that recently have been analyzed in detail
Knockin' on heaven's door: Molecular mechanisms of neuronal tau uptake
Since aggregates of the microtubule-binding protein tau were found to be the main
component of neurofibrillary tangles more than 30 years ago, their contribution to
neurodegeneration in Alzheimer's disease (AD) and tauopathies has become well
established. Recent work shows that both tau load and its distribution in the brain
of AD patients correlate with cognitive decline more closely compared to amyloid
plaque deposition. In addition, the amyloid cascade hypothesis has been recently
challenged because of disappointing results of clinical trials designed to treat AD by
reducing beta-amyloid levels, thus fuelling a renewed interest in tau. There is now
robust evidence to indicate that tau pathology can spread within the central nervous
system via a prion-like mechanism following a stereotypical pattern, which can be
explained by the trans-synaptic inter-neuronal transfer of pathological tau. In the receiving neuron, tau has been shown to take multiple routes of internalisation, which
are partially dependent on its conformation and aggregation status. Here, we review
the emerging mechanisms proposed for the uptake of extracellular tau in neurons
and the requirements for the propagation of its pathological conformers, addressing
how they gain access to physiological tau monomers in the cytosol. Furthermore, we
highlight some of the key mechanistic gaps of the field, which urgently need to be
addressed to expand our understanding of tau propagation and lead to the identification of new therapeutic strategies for tauopathies
- …