39 research outputs found

    Heart failure with preserved ejection fraction in humans and mice:Embracing clinical complexity in mouse models

    Get PDF
    Heart failure (HF) with preserved ejection fraction (HFpEF) is a multifactorial disease accounting for a large and increasing proportion of all clinical HF presentations. As a clinical syndrome, HFpEF is characterized by typical signs and symptoms of HF, a distinct cardiac phenotype and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HFpEF. To date, no therapy has proven to improve outcomes in HFpEF, with drug development hampered, at least partly, by lack of consensus on appropriate standards for pre-clinical HFpEF models. Recently, two clinical algorithms (HFA-PEFF and H(2)FPEF scores) have been developed to improve and standardize the diagnosis of HFpEF. In this review, we evaluate the translational utility of HFpEF mouse models in the context of these HFpEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HFpEF features and included several cardiac and extra-cardiac parameters as well as age and sex for each HFpEF mouse model. We found that most of the pre-clinical HFpEF models do not meet the HFpEF clinical criteria, although some multifactorial models resemble human HFpEF to a reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HFpEF, a novel approach for the development of pre-clinical HFpEF models is needed, taking into account the complex HFpEF pathophysiology in humans

    Left ventricular dysfunction in heart failure with preserved ejection fraction-molecular mechanisms and impact on right ventricular function

    Get PDF
    The current classification of heart failure (HF) based on left ventricular (LV) ejection fraction (EF) identifies a large group of patients with preserved ejection fraction (HFpEF) with significant morbidity and mortality but without prognostic benefit from current HF therapy. Co-morbidities and conditions such as arterial hypertension, diabetes mellitus, chronic kidney disease, adiposity and aging shape the clinical phenotype and contribute to mortality. LV diastolic dysfunction and LV structural remodeling are hallmarks of HFpEF, and are linked to remodeling of the cardiomyocyte and extracellular matrix. Pulmonary hypertension (PH) and right ventricular dysfunction (RVD) are particularly common in HFpEF, and mortality is up to 10-fold higher in HFpEF patients with vs. without RV dysfunction. Here, we review alterations in cardiomyocyte function (i.e., ion homeostasis, sarcomere function and cellular metabolism) associated with diastolic dysfunction and summarize the main underlying cellular pathways. The contribution and interaction of systemic and regional upstream signaling such as chronic inflammation, neurohumoral activation, and NO-cGMP-related pathways are outlined in detail, and their diagnostic and therapeutic potential is discussed in the context of preclinical and clinical studies. In addition, we summarize prevalence and pathomechanisms of RV dysfunction in the context of HFpEF and discuss mechanisms connecting LV and RV dysfunction in HFpEF. Dissecting the molecular mechanisms of LV and RV dysfunction in HFpEF may provide a basis for an improved classification of HFpEF and for therapeutic approaches tailored to the molecular phenotype

    Physical activity in the prevention of peripheral artery disease in the elderly

    Get PDF
    Aging is a well-known cardiovascular risk factor and cardiovascular diseases (CVD) are estimated to be the most common cause of death in the elderly. Peripheral arterial disease (PAD) represents an important clinical manifestation of CVD leading to increase morbidity and mortality, especially in elderly population. The correct management of PAD population includes the prevention of cardiovascular events and relief of symptoms, most commonly intermittent claudication. Progressive physical activity is an effective treatment to improve walking distance and to reduce mortality and cardiovascular events in patients with PAD, however the ability to effectively engage in physical activity often declines with increasing age. The maintenance and increase of reserve functional capacity are important concepts in the elderly population. Ultimately, the goal in participation of physical activity in the healthy elderly population is maintenance and development of physical functional reserve capacity. Therefore, for individuals suffering of PAD, appropriate physical activity in the form of supervised exercise may serve as a primary therapy. Although there are few direct comparisons of therapeutic exercise programs vs. pharmacological or surgical interventions, these increases in walking distance are greater than those reported for the most widely used agents for claudication, pentoxyphylline, and cilostazol. Despite a reduction in mortality and improvement of quality of life caused by physical activity in the PAD population, the molecular, cellular, and functional changes that occur during physical activity are not completely understood. Therefore, this review article aims at presenting an overview of recent established clinical and molecular findings addressing the role of physical activity on PAD in the older population

    Ankle/brachial index to everyone.

    Get PDF
    In the last years significant attention has been paid in identifying markers of subclinical atherosclerosis or of increased cardiovascular risk. Method An abnormal ankle/brachial index (ABI) identifies patients affected by lower extremity peripheral arterial disease, and even more important, represents a powerful predictor of the development of future ischemic cardiovascular events. Conclusions In our opinion, ABI is a cardiovascular risk prediction tool with very desirable properties that might become a routine measurement in clinical practice

    Impairment of the adrenergic reserve associated with exercise intolerance in a murine model of heart failure with preserved ejection fraction

    Get PDF
    This project is funded by grants from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation—SFB 1470—A01 to FRH and PA and A02 to GGS) and from the DZHK (German Centre for Cardiovascular Research to GGS). CUO is additionally funded by the DFG (OE 688/4-1).Aim Exercise intolerance is the central symptom in patients with heart failure with preserved ejection fraction. In the present study, we investigated the adrenergic reserve both in vivo and in cardiomyocytes of a murine cardiometabolic HFpEF model. Methods 12-week-old male C57BL/6J mice were fed regular chow (control) or a high-fat diet and L-NAME (HFpEF) for 15 weeks. At 27 weeks, we performed (stress) echocardiography and exercise testing and measured the adrenergic reserve and its modulation by nitric oxide and reactive oxygen species in left ventricular cardiomyocytes. Results HFpEF mice (preserved left ventricular ejection fraction, increased E/e', pulmonary congestion [wet lung weight/TL]) exhibited reduced exercise capacity and a reduction of stroke volume and cardiac output with adrenergic stress. In ventricular cardiomyocytes isolated from HFpEF mice, sarcomere shortening had a higher amplitude and faster relaxation compared to control animals. Increased shortening was caused by a shift of myofilament calcium sensitivity. With addition of isoproterenol, there were no differences in sarcomere function between HFpEF and control mice. This resulted in a reduced inotropic and lusitropic reserve in HFpEF cardiomyocytes. Preincubation with inhibitors of nitric oxide synthases or glutathione partially restored the adrenergic reserve in cardiomyocytes in HFpEF. Conclusion In this murine HFpEF model, the cardiac output reserve on adrenergic stimulation is impaired. In ventricular cardiomyocytes, we found a congruent loss of the adrenergic inotropic and lusitropic reserve. This was caused by increased contractility and faster relaxation at rest, partially mediated by nitro-oxidative signaling.Peer reviewe

    Fibroblast Primary Cilia are Required for Cardiac Fibrosis

    Get PDF
    Background: The primary cilium is a singular cellular structure that extends from the surface of many cell types and plays crucial roles in vertebrate development, including that of the heart. Whereas ciliated cells have been described in developing heart, a role for primary cilia in adult heart has not been reported. This, coupled with the fact that mutations in genes coding for multiple ciliary proteins underlie polycystic kidney disease, a disorder with numerous cardiovascular manifestations, prompted us to identify cells in adult heart harboring a primary cilium and to determine whether primary cilia play a role in disease-related remodeling. Methods: Histological analysis of cardiac tissues from C57BL/6 mouse embryos, neonatal mice, and adult mice was performed to evaluate for primary cilia. Three injury models (apical resection, ischemia/reperfusion, and myocardial infarction) were used to identify the location and cell type of ciliated cells with the use of antibodies specific for cilia (acetylated tubulin, γ-tubulin, polycystin [PC] 1, PC2, and KIF3A), fibroblasts (vimentin, α-smooth muscle actin, and fibroblast-specific protein-1), and cardiomyocytes (α-actinin and troponin I). A similar approach was used to assess for primary cilia in infarcted human myocardial tissue. We studied mice silenced exclusively in myofibroblasts for PC1 and evaluated the role of PC1 in fibrogenesis in adult rat fibroblasts and myofibroblasts. Results: We identified primary cilia in mouse, rat, and human heart, specifically and exclusively in cardiac fibroblasts. Ciliated fibroblasts are enriched in areas of myocardial injury. Transforming growth factor β-1 signaling and SMAD3 activation were impaired in fibroblasts depleted of the primary cilium. Extracellular matrix protein levels and contractile function were also impaired. In vivo, depletion of PC1 in activated fibroblasts after myocardial infarction impaired the remodeling response. Conclusions: Fibroblasts in the neonatal and adult heart harbor a primary cilium. This organelle and its requisite signaling protein, PC1, are required for critical elements of fibrogenesis, including transforming growth factor β-1-SMAD3 activation, production of extracellular matrix proteins, and cell contractility. Together, these findings point to a pivotal role of this organelle, and PC1, in disease-related pathological cardiac remodeling and suggest that some of the cardiovascular manifestations of autosomal dominant polycystic kidney disease derive directly from myocardium-autonomous abnormalities

    Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases

    No full text
    Alterations in gut microbiota composition and its metabolic activity are emerging as one of the most powerful determinants of cardiovascular disease. Although our knowledge of the precise molecular mechanisms by which gut microbiota influences cardiometabolic homeostasis is still limited, a growing body of knowledge has recently been uncovered about the potential modulation of microbiome for cardiovascular diagnostic and therapeutic aspects. The multitude of interactions between the microorganisms inhabiting the digestive tract and the host has been recognized crucial in the development and progression of atherosclerosis, obesity, diabetes and hypertension. Here, we summarize the role of gut microbiota in host physiology as well as in the pathophysiology of the most common cardio-metabolic disorders, discussing the potential therapeutic opportunities offered by interventions aimed at modifying microbiome composition and activity

    Survival and Cardiovascular Outcomes of Patients With Secondary Mitral Regurgitation: A Systematic Review and Meta-analysis

    No full text
    The outcomes of patients with left ventricular (LV) dysfunction and secondary mitral regurgitation (SMR) are still controversial
    corecore